
LEHIGH 
University 

SOME BASIC PROBLEMS ON THE 
-MECHANICS OF FUNCTIONALLY 

GRADED MATERIALS 

Final Progress Report 

F. Erdogan 

December 1998 

DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited 

U.S. ARMY RESEARCH OFFICE 

GRANT NO, DAAH04-95-1-0232 

Department of Mechanical Engineering & Mechanics 
19 Memorial Drive West 

Lehigh University, Bethlehem, PA 18015-3085 



SF 298 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES 

REPORT DOCUMENTATION PAGE Form Approved 
OMB NO. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188   Washington DC 20503 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
January 1999 

3. REPORT TYPE AND DATES COVERED 
5/1/95-9/30/98 

4. TITLE AND SUBTITLE 

Some basic problems on the mechanics of functionally 
graded materials 

6. AUTHOR(S) 

Fazil Erdogan 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 

Lehigh University, ME-MECH Department 
Bethlehem,  PA    18015 

9.    SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Research Office 
P.O.Box 12211 
Research Triangle Park, NC 27709-2211 

11. SUPPLEMENTARY NOTES 

5. FUNDING NUMBERS 

DAAH04-95-1-0232 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

533249 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

ßjtO 33S3¥. 1-& 

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as 
an official Department of the Army position, policy or decision, unless so designated by other documentation. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12 b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum200 words)    Grading  thermomechanical properties of  composites by continu- 
ously varying the volume fractions of their constituents is becoming a powerful tool in 
designing new materials for  specific applications.    The broad objective of this project 
has been to  identify and study a series of basic mechanics problems relating to  the fail- 
ure of  this new class of composites called functionally graded materials .    The fields 
selected for investigation which also have important  technological applications are frac- 
ture mechanics of  thermal barrier coatings and  thermoelectric  cells,   contact mechanics of 
graded materials,  and wave propagation in inhomogeneous  solids.     In each case first the 
basic concepts are studied analytically.     Then a  series of benchmark problems are con- 
sidered  in order  to demonstrate the distinguishing features of  the mechanics of graded 
materials and  to provide some results  that could be used  in practical applications. 
Because of  its importance in life prediction and failure analysis of  structural compo- 
nents,  a greater part of the research effort in the project was devoted to the fracture 
mechanics of graded materials.     In solving  the benchmark problems  the method used has 
been generally analytical,   the exceptions being  the layered  thermal barrier  coatings and 
the nonlinear post-buckling  examination of  spallation problems for which finite element 
metborls warp. IISRH .   
14. SUBJECT TERMS 
Functionally graded materials,  fracture mechanics,  contact mech- 
anics, wave propagation,   spallation surface cracking,   interface 
cracking, material orthotropy 

17. SECURITY CLASSIFICATION 
OR REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 
NSN 7540-01-280-5500 

15. NUMBER IF PAGES 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 

Enclosure 1 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 
298-102 



TABLE OF CONTENTS 

Cover page i 

Report documentation page n 

Table of Contents iu" 

Abstract 1 

1. Background information on functionally graded materials 2 

1.1 Thermal barrier coatings 3 
1.2 Applications in tribology 4 
1.3 Elastodynamics of graded materials 5 
1.4 Thermoelectric cells 6 

2. Objectives of the research program 6 

3. Fracture mechanics of graded materials 7 

3.1 Fracture mechanics of FGMs - basic concepts 7 
3.2 The debonding problems in FGMs 11 
3.3 Cracking perpendicular to interfaces 12 
3.4 The end effects 14 
3.5 The effect of material orthotropy 16 
3.6 Crack tip stress fields/isochromatics 16 
3.7 Benchmark solutions 18 

4. Contact mechanics of FGMs 22 

4.1 Basic concepts 22 
4.2 Benchmark solutions 23 

5. Elastodynamics of graded materials 24 

6. Concluding remarks 25 

7. Bibliography 25 

8. List of publications 28 

9. Personnel 29 

m 



10.      Appendices 60 

A. Spallation of FGM coatings - a nonlinear model 60 
B. Interface cracking of FGM coatings under uniform 70 

thermal loading 
C. Contact mechanics of FGM coatings 80 
D. Axisymmetric crack problem in a functionally graded 91 

semi-infinite medium 
E. Wave propagation in a functionally graded elastic 102 

medium 
F. The mixed-mode crack problem in an orthotropic 112 

graded medium 

IV 



ABSTRACT 

Grading thermomechanical properties of composites by continuously varying the 
volume fractions of their constituents is becoming a powerful tool in designing new 
materials for specific applications. The broad objective of this project has been to 
identify and study a series of basic mechanics problems relating to the failure of this new 
class of composites called functionally graded materials. The fields selected for 
investigation which also have important technological applications are fracture 
mechanics of thermal barrier coatings and thermoelectric cells, contact mechanics of 
graded materials, and wave propagation in inhomogeneous solids. In each case first the 
basic concepts are studied analytically. Then a series of benchmark problems are 
considered in order to demonstrate the distinguishing features of the mechanics of graded 
materials and to provide some results that could be used in practical applications. 
Because of its importance in life prediction and failure analysis of structural components, 
a greater part of the research effort in the project was devoted to the fracture mechanics 
of graded materials. In solving the benchmark problems the method used has been 
generally analytical, the exceptions being the layered thermal barrier coatings and the 
nonlinear post-buckling examination of spallation problems for which finite element 
methods were used. 

In this report, after providing the necessary review and background information 
on the applications of graded materials, the objectives of the research program is briefly 
described and the main body of the technical work is presented. Typical benchmark 
problems discussed in the appendices include a nonlinear spallation model for graded 
coatings, the interface cracking of inhomogeneous coatings due to thermal loading, 
contact mechanics of graded materials and coatings in the presence of friction, an 
axisymmetric spallation problem in a graded medium, wave propagation in a graded 
elastic plate, and the influence of material orthotropy in an inhomogeneous medium 
under mixed-mode conditions. The area of multiple site cracking in graded materials is 
described in detail in a separate technical project report. The report also includes some 
results concerning the distortion of isochromatics due to material inhomogeneity and the 
effect of curvatures, and inhomogeneities of the contacting elastic solids and of friction 
on the distribution of contact stresses. 



1.  BACKGROUND INFORMATION ON FUNCTIONALLY 
GRADED MATERIALS 

In order to meet the increasingly stringent demands of future technologies in 
power generation, aerospace, microelectronics and transportation, in current research a 
great deal of emphasis is being placed on material design, more specifically, on 
developing new materials or material systems tailored for specific applications. 
Generally, such materials tend to be composites and intermetallics that have 
homogeneous bulk properties. Most modern composites are fiber or filament reinforced, 
paniculate or layered in structure. Many of the laminated materials, thin films and 
coatings fall into the latter category. A common feature of composites is that they consist 
of bonded dissimilar homogeneous materials with very complex microstructure. 
Consequently, in studying mechanics, particularly failure mechanics of such materials the 
nature of interfaces or interfacial regions would play an extremely important role. From 
a viewpoint of failure mechanics, material property discontinuities across the interfaces 
generally have two undesirable consequences, namely higher residual, thermal and 
mechanical stresses, and weaker bonding strength. To circumvent these difficulties, very 
often the interfacial regions are modified by introducing a third medium in the form of an 
interlayer or mechanically roughening the contacting surfaces or using suitable coupling 
agents. 

A relatively new alternative concept which may also be used to overcome some of 
the shortcomings of bonded dissimilar homogeneous materials, particularly of layered 
materials, would be the introduction of interfacial regions or coatings with graded 
thermomechanical properties* [1-6]. Thus, by varying the volume fractions of the 
constituents between zero to one hundred percent, thereby obtaining a continuous 
through-thickness property variation, it is possible to obtain not only smoother stress 
distributions and lower stress concentrations [7], [8], but also higher bonding strength [9]. 
For example, in [7] it was shown that the points of intersection of free surfaces and 
interfaces between dissimilar materials are points of stress singularity and, consequently, 
potential locations of debonding fracture initiation. On the other hand, if the sharp 
interface is eliminated by introducing a graded layer, the singularity disappears and the 
stress distribution becomes considerably smoother [7], [10]. 

In many of the deposition and bonding processes used in ceramic coatings, it is 
difficult to obtain the desired strength for the interfacial zones. This is due largely to 
poor adhesion and partly to high stress concentrations. The adverse influence of both of 
these factors can be reduced significantly by introducing a graded interfacial zone 
between the two materials. The technique can be particularly useful for material pairs in 
which bonding is inherently difficult. For example, in [9] it was shown that for a 
diamond film synthesized over a 50/50 W/Mo alloy by using a DC plasma jet, the 
measured bonding strength is less than 10 kg/cm2. On the other hand if a graded 
interfacial zone is introduced by first plasma-spraying the substrate with tungsten carbide 
and then gradually adding increasing amounts of methane and hydrogen before growing 
the diamond film, the adhesive strength is measured to be over 150 kg/cm2. 

The numbers in bracket refer to the references listed in the Bibliography section of this 
report. 



These mostly particulate composites with continuously varying volume fractions 
are called functionally graded materials (FGMs). By controlling not only the 
composition profile but also the microstructure, the concept of FGMs could provide a 
great deal of flexibility in material design. As the processing techniques improve, the 
potential for special application of FGMs appears to be nearly unlimited. However, in 
the immediate future the primary application of these new materials will most likely be 
limited to thermal barrier coatings, tribology (with wear and corrosion-resistant coatings), 
abradable seals, impact-resistant structures, and thermoelectric cells. In the remainder of 
this section these potential applications of FGMs will be briefly described. The primary 
objectives of the research program will be outlined in Section 2. The fundamental 
concepts relating to the failure mechanics of FGMs and underlying fracture and contact 
problems will be discussed in Section 3. The details of the specific technical material 
have been presented in the form of technical reports, manuscripts, reprints of journal 
articles and articles that appeared in proceedings. 

1.1      Thermal Barrier Coatings 

Within the past decade considerable progress has been made in using ceramic 
coatings to protect metallic components from high temperatures. These thermal barrier 
coatings (TBCs) are currently being used in conjunction with air cooling to prolong the 
life of hot section turbine components in aircraft engines. The application of ceramic 
TBCs also offers the possibility of increasing the thermodynamic efficiency of landbased 
turbines by increasing the inlet temperature of gases. TBC technology is thus considered 
to be a viable means for developing more efficient aircraft engines and stationary gas 
turbines. There are, however, several major technical issues involving the next 
generation of TBCs that need to be addressed: (a) improvement in processing techniques 
from both economic and performance standpoints, (b) understanding the failure 
mechanisms of TBCs in simulated and actual turbine environments and developing the 
appropriate techniques for their modeling and analysis, and (c) developing 
thermomechanical material characterization and test methodologies to measure the 
material properties necessary for the application of life prediction models. 

The current approach for accommodating the material property mismatch between 
the ceramic coating and the metallic substrate is to make the ceramic layer to be more 
compliant or strain-tolerant by introducing a segmented columnar structure (or in some 
cases pores and microcracks). The difficulty with this solution is that the particular 
microstructural features that provide compliant coatings also provide rapid diffusion 
paths for oxygen. The experience seems to indicate that by far the most critical factor 
limiting the performance of the state-of-the-art TBCs is the spallation of ceramic layers 
which take place either along a plane parallel to the ceramic/oxide layer interface (as in 
plasma-spray coatings) or bond coat/oxide interface (as in coatings processed by using 
electron beam physical vapor deposition). Usually a micron-thick oxide layer (generally 
A/203) forms between the bond coat and the top coat during processing. It then gradually 
grows during operation as the system is subjected to sustained high temperature until 
most of the aluminum in the bond coat is depleted. Thus, the life of TBCs seems to be 
controlled by the number and exposure time of thermal cycles and the process of local 
initiation, growth and coalescence of microcracks. 



Main desirable characteristics of an ideal TBC appear to be low conductivity for 
thermal insulation, high coefficient of thermal expansion to match that of the metallic 
substrate, and high resistance to oxygen diffusion. It is highly unlikely to find all these 
favorable properties in a single material. Many of the well-known ceramics have either 
high conductivity and low oxygen diffusivity or low conductivity and high oxygen 
diffusivity. To prevent oxygen diffusion at some point a layer of A/2O3 or mullite 
(AZ2C«3»2Si02) may be needed. However, these materials have considerably higher 
thermal conductivity than that of, for example, YSZ (ytria-stabilized zerconia). Thus, the 
problem appears to be an optimal design of a multi-layered structure, including graded 
interfacial zones and coatings. 

Typically, the current design of TBCs consists of a partially stabilized zirconia 
coating deposited on an intermediate metallic bond coat (e.g., NiCr AZY) which is plasma 
sprayed on the (superalloy) substrate [6]. The main function of the bond coat is to protect 
the substrate against oxidation. It also helps to reduce thermal expansion mismatch 
between the ceramic coating and the metallic substrate, and provides the surface texture 
needed to improve bonding. At high temperatures an oxide (A/2O3) scale is formed along 
the PSZ-bond coat interface. Even though this A/2O3 layer forms an oxygen diffusion 
barrier, it also introduces a weak cleavage plane which, under thermal cycling, may lead 
to spallation. This difficulty may be overcome by introducing a graded (NiCrA^Y-PSZ) 
layer between the bond coat and the ceramic layer [6]. 

The basic premise behind using the FGM concept is that by replacing sharp 
interfaces with graded interfacial zones or by replacing homogeneous ceramic layers with 
graded metal/ceramic composites it is possible to improve the resistance of the coating to 
spallation as a result of reduced stress levels and improved bonding strength. 

The fundamental fracture mechanics concepts relating to the failure of FGM 
coatings and interfacial zones will be described in Section 3 of this report and results 
summarizing some of the research carried out on the subject will be presented in 
Appendices A and B. 

1.2      Applications in Tribology 

An obvious application of ceramic coatings seems to be to provide the necessary 
hardness or wear resistance to the surfaces of structural components transmitting forces 
through contact, such as gears, bearings, cams and machine tools. Intuitively it is clear 
that the fatigue life of these components may be improved quite considerably by using 
graded rather than homogeneous ceramic coatings on the main load-bearing metallic 
substrate. In these load-transfer components FGM coatings would provide the necessary 
surface hardness without sacrificing toughness. 

A wear-related application of FGM coatings or interfacial zones may be found in 
abradable seals used in some stationary gas turbines to help minimize the gas leakage 
through the gap between the tips of rotating blades and turbine shroud. Here the main 
components in the shroud are the metallic structure or the substrate, the bond coat, a layer 
of high density ceramic and a layer of very low density ceramic with a graded zone 
replacing every sharp interface [11]. The underlying mechanics problem is again a 
contact problem and the primary desirable material property requirements are toughness 
and abradability. 



In the past wear and corrosion-resistant coatings have been used quite extensively 
in industrial machinery. Coating materials have been metals such as stainless steels, Mo 
based alloys and WC-Co as well as ceramics such as A/203/NiCr have been extensively 
used in aircraft industry to coat various turbine/compressor components and mid-span 
stiffeners for improved wear-resistance. Other applications of wear-resistant coatings 
have been in printing rolls, steel mills, petrochemical industry and transportation 
industry. Most of these coatings have been deposited by using a thermal spray technique. 
Since thermal spray processes are readily suitable for composition grading, service life 
improvements can be obtained in all applications of wear and corrosion-resistant coatings 
by using the FGM concept. 

The basic mechanics of crack and contact problems associated with the failure of 
wear and corrosion-resistant coatings and abradable seals will be described in Sections 3 
and 4 of this report. The results of some specific studies will be presented in Appendices 
A through D and F. 

1.3      Elastodynamics of Graded Materials 

A first step in studying the failure mechanics of structural components usually is a 
detailed stress analysis for identifying the likely sites of failure initiation and for 
determining the peak values of stresses. In some cases the loading of these 
inhomogeneous components may be dynamic in nature. Thus, an important area of 
interest in considering the applications of graded materials would be to study the dynamic 
response of the component to, for example, impact or blast loading. In elastodynamics of 
materials with continuously varying properties, usually the pulse shape is distorted in 
time, the wave propagation speed is not constant, and there are no sharp interfaces that 
would cause wave reflections. Consequently, even in the simple case of one-dimensional 
wave propagation the locations and magnitudes of peak stresses cannot be determined by 
inspection. 

Because of its relevance in geophysics and soil mechanics, in the past there has 
been quite considerable interest in the elastodynamics of inhomogeneous media. In 1946 
Friedlander [5] proposed a solution that consists of a series of terms the first of which 
describes the wave motion predicted by geometrical optics and the subsequent terms 
account for certain types of diffraction effects. Karal and Keller [6] extended this method 
to treat general wave propagation problems in inhomogeneous elastic media by 
formulating the problem in terms of displacements and displacement potentials. Pekeris 
[7] used an asymptotic method to solve the problem for a half-space with a variable speed 
of sound and reduced the solution to a Fourier-Bessel series. Since then geophysics- 
oriented contributions to the field have been quite voluminous. 

Among many others, there are two important reasons for studying the problem of 
wave propagation and impact in FGMs. The first is the interpretation and analysis of 
possible nondestructive testing and evaluation results. The second is related to service 
life and reliability of FGM components, specifically, to the evaluation of peak stresses for 
the purpose of spallation studies. A one-dimensional benchmark problem was considered 
in [15]. A brief description and summary of the results are also presented in Appendix E. 



1.4      Thermoelectric Cells 

In many conductors generally the electrical current and the thermal flux are 
coupled. This coupling can be used, in principle, to construct refrigerators or electric 
power generators. A temperature difference AT across any conductor would generate a 
voltage AV. Generally S=AV/AT is a measure of the efficiency of the device where S is 
the Seebeck coefficient. A commonly known such device is the thermocouple. The 
efficiency of the device is also dependent on thermal conductivity k and electrical 
resistivity p. Thus, it has been shown that the dimensionless constant defined by 
Z=TS2/kp is the measure of device efficiency at temperature T(K), where Z is known as 
the figure of merit. Most metallic materials have very small values Z and, consequently, 
are not suitable for thermoelectric cell applications. The group of materials most suitable 
for refrigeration as well as power generation appears to be certain doped semiconductors 
[16]. Some of the typical applications for thermoelectric devices are power for deep 
space probes, remote weather stations, underwater and remote navigational systems in 
power generation area and spot cooling of electronic devices, infrared and X-ray 
detectors, fiber optic laser packages, and computer central processing units in 
refrigeration area. 

In semiconductors suitable for thermoelectric cell application, the figure of merit 
is highly temperature dependent. In a typical temperature range such as 300-1000 (K) the 
use of a single material would be very inefficient. Thus, to optimize the power efficiency 
a layered material is necessary. This result of increasing the overall device efficiency can 
best be accomplished by using bonded dissimilar materials containing many layers each 
operating near its optimum temperature. To a lesser extent, it can also be accomplished 
by using a single semi-conductor with graded dopant concentration. In either case, the 
underlying mechanics is one of bonded dissimilar materials with stress-free surfaces 
subjected to steep temperature gradients. Here, because of stress singularities, debonding 
is a common mode of failure. It is, therefore, clear that, from the viewpoint of failure 
mechanics as well as the device efficiency, the problem is highly suitable for the 
application of FGM concept [17]. 

2.   OBJECTIVES OF THE RESEARCH PROGRAM 

The primary objectives of this research program have been to identify and study a 
series of fundamental problems relating to the mechanics of functionally graded 
materials. A particular emphasis has been on the investigation of failure oriented 
problems. Thus, considering present and potential technological applications of FGMs, 
following three specific areas were selected for investigation: 

• Fracture mechanics of FGMs 
• Contact mechanics of FGMs 
• ElastodynamicsofFGMs 



Because of the relative importance of the topic, a greater portion of the research 
effort was devoted to fracture mechanics. Particular research concentration in this area 
has been on the following: 

• The examination of the singular behavior of the solutions of crack problems in 
FGMs; specifically the investigation of the singularity problems in FGMs that are the 
counterpart of such anomalous behavior as oscillating and non-square-root power 
singularities in piecewise homogeneous materials. 

• The development of analytical and effective numerical methods for solving the 
related crack and the nonlinear crack/contact problems. 

• The identification and solution of some useful benchmark problems. 

In studying the contact problems in load transfer components with FGM coatings, 
the main emphasis has been on the effect of material inhomogeneity parameters and the 
coefficient of friction on the contact stresses, specifically on their peak values, the nature 
of singularity if any, and fretting stresses. Also considered was the influence of the 
relative (positive or negative) curvatures of the contacting surfaces. 

In elastodynamics of FGMs the primary objective was to provide the solution of a 
typical pulse propagation problem in a medium with finite thickness and fixed or free 
boundaries, to examine the distortion of the pulse and to determine the peak stresses. 

In general, the results of the research program are intended to provide technical 
support for material scientists and engineers who are trying to develop methods for 
processing FGMs and for design engineers who are interested in applications. Also, the 
crack tip singularities found and benchmark solutions provided would be quite useful in 
the development and testing of finite element models for solving more complex problems 
involving FGMs. 

3.   FRACTURE MECAHNICS OF GRADED MATERIALS 

In this section, after describing some elementary concepts of fracture mechanics 
of inhomogeneous materials, the FGM counterparts of the anomalous stress singularities 
arising from the study of crack problems in piecewise homogeneous materials will be 
examined and some recent results obtained from various benchmark solutions will be 
discussed. 

3.1   Fracture Mechanics of FGMs - Basic Concepts 

In a broad sense "fracture" is creation of new surfaces in solids. The fundamental 
criterion of fracture initiation and propagation is based on the energy balance concept. 
Let the solid contain a dominant flaw which is usually considered to be a planar crack of 
surface area A. Under given external loads if the crack grows by an amount dA in time 
dt, the thermodynamic equilibrium of the solid requires that 

dU__dV_   dT_   dD (1) 

dt      dt     dt     dt 



where U, V, T and D respectively are the work of the external loads, the recoverable 
internal energy, the kinetic energy, and the sum of all dissipated energies such as surface 
tension, plastic work, viscous dissipation, etc. If the energy dissipation takes place only 
around the advancing periphery of the crack, in a quasi-static case T is negligible and 
defining dD/dA=Gc (1) may be expressed as 

^-(U-V)=GC . (2) 
dA 

In the fracture criterion given by (2) the left hand side is the energy available and Gc is 
the energy required to create a unit area of new fracture surface. They are also known as 
the crack driving force and the fracture toughness, respectively. By using the concept of 
crack closure it can then be shown that the increment d(U-V) of the energy available for 
fracture may be evaluated from the asymptotic stresses and the crack opening 
displacements near the crack tip which, in homogeneous solids, may be obtained from the 
three-dimensional elasticity solution as follows: 

aij(r,e) = -^fUj(e) + ^=f2ij(d) , (i,j = x,y)  , (3) 

a„(r,0) = i/3,.(0), (/ = x, y) , (4) 

+       _^2(l-v2),    /r-     +       __2(1-V2),     nr- 
v+-v   = — -Jfc,V2r ,u+-u   =— -k2y/2r , (5) 

E E 

w+-MT=^-V2r (6) 

where ki, k2 and k3 are the modes I, n, and HI stress intensity factors, fiy, faj and fji are 
known functions and E, v and \i are the elastic constants, E=2u,(l+v). From the crack 
closure energy it may then be shown that 

a, = 2S^*? , ft = =S^itf   , (h = f H , (7) 
E E 2\i 

G=-^(XJ-V) = Gl+G2+G3 (8) 
dA 

where G is the total energy available for fracture. 
Equation (7) indicates that one may also use kj in place of Gt as the measure of the 

crack driving force. For mode I loading conditions, for example, defining 



K, =kx4^ , Gle =GIC , K1C=4GICEI(\-V
2
)    , (9) 

the fracture criterion (2) may be expressed as 

KJ<KIC . (10) 

Equation (10) has proved to be very useful in considering the fracture stability. 
However, perhaps the most useful application of the stress intensity factors may be found 
in analyzing the subcritical crack growth processes. 

In studying the fracture mechanics of FGMs one may have to deal with a number 
of distinct singularity problems. The first is the investigation of the nature of stress 
singularities near the tip of a crack embedded in an inhomogeneous medium. The second 
is the general problem of debonding and the effect of a possible "kink" in material 
property distributions on the behavior of stress singularities. And the third is the basic 
surface cracking problems and the nature of the stress singularities for cracks intersecting 
the interfaces. 

To examine the influence of the material inhomogeneity on the asymptotic stress 
state near the crack tips, we first consider the plane elasticity problem for an infinite 
medium containing a line crack. For simplicity we will assume that the Poisson's ratio v 
of the medium is constant and the shear modulus is approximated by 

ß(x, y) = \i0 exp(j3x+ yy) , (11) 

where u«, ß and y are known constants. This problem was solved for a crack along y=0, 
-a<x<a under arbitrary loading conditions [18], [19]. It was shown that near the crack tip 
x=a the stresses have the following asymptotic behavior: 

Cy (x, y) = exp[r(/? cos# + ysinÖ)] *fv,(ß) + -£*fv,<ß) .727^ \FTrJ2ii 

where the stress intensity factors k\ and fe are defined by 

, (i, j = x,y) , 1      J?    //\\ 2 

(12) 

*,(a) = limJ2(x-a)ow(x,0) ,   k2(a) = \im.yj2(x-a)o   (x,0) ,  (13) 

and the functions/HJ and/2y are identical to those found for the homogeneous materials 
given in (3). Note that the asymptotic stress states for homogeneous materials (3) and 
FGMs (12) are identical only at r=0. However, since the crack opening displacement is 
also influenced in a way similar to stresses, the crack driving force (or, for "fixed grip" 
conditions, the strain energy release rate) was found to be identical to that calculated for 
the homogeneous materials, namely 

G=£T(1 + K)    2+   2 

8/i(fl.0) 



where K=3-4V for plane strain and K=(3-V)/(1+V) for plane stress conditions. 
Some sample results for an embedded crack of length 2a in an infinite medium 

under plane strain conditions are given in Table 1 [18,19]. Referring to (11) we first 
define 

x'=xcosd + ysmd, ß = a)cosd , Y = cosmd , a2 = ß2+y2 ,   (15) 

ß(x,y)=ß(x') = ß0 exp(öK') . (16) 

The medium is assumed to be loaded by fixed grips away from the crack region with 
£yy,(x',+°°) = s0. Thus, the normalizing stress intensity factor for the results given in the 

table is 

ke=2(l+v)n0e0^ . (17) 

Note that the crack orientation angle 6=0 corresponds to a mode I problem for which 
k2(+a) = 0, whereas for 0=rc/2 the loading is parallel to the crack and, consequently, all 
stress intensity factors are zero. 

Table 1. The effect of material nonhomogeneity parameter aco and the crack orientation 
angle 6 on the stress intensity factors; v=0.3; loading: uniform strain away from the crack 
region, 8/y.(x',Too) = e0. 

a© e/7c k,(a)/ko ki(-a)/ko k2(a)/ko k2(-a)/ko 
0 1.196 0.825 0 0 
0.1 1.081 0.750 -0.321 -0.254 
0.2 0.781 0.548 -0.514 -0.422 

0.25 0.3 0.414 0.290 -0.504 -0.437 
0.4 0.121 0.075 -0.304 -0.282 
0.5 0 0 0 0 ■ 
0 1.424 0.674 0 0 
0.1 1.285 0.617 -0.344 -0.213 
0.2 0.925 0.460 -0.548 -0.365 

0.5 0.3 0.490 0.247 -0.532 -0.397 
0.4 0.146 0.059 -0,314 -0.269 
0.5 0 0 0 0 
0 6.317 0.115 0 0 
0.1 5.376 0.117 -0.867 -0.037 
0.2 3.315 0.115 -1.155 -0.090 

2.5 0.3 1.441 0.082 -0.900 -0.158 
0.4 0.369 0.004 -0.429 -0.179 
0.5 0 0 0 0 
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Table 2. Stress intensity factors for a plane strain and a penny-shaped crack in a graded 
medium under tension a0 perpendicular to the plane of the crack; v=0.3. 

©a            0 0.1 0.25 0.5 1.0 2.5 5.0 
Plane Strain Crack 
kx/GoJi      1 

k2/o-0^      0 

1.008 

0.026 

0.036 

0.065 

1.101 

0.129 

1.258 

0.263 

1.808 

0.697 

2.869 

1.567 
Penny-Shaped Crack 

k,/(la.VS)     1 L002 L012 L038 L118 L442 2-083 

k,/(!<rtVS)    ° °-017 °-041 °-083 °-168 0-440 0-960 

Table 2 shows some limited results comparing plane strain and penny-shaped 
crack solutions for a graded material under uniform tension a0 perpendicular to the plane 
of the crack where 03=0 corresponds to the results for a homogeneous medium. The table 
shows that the stress intensity factors in FGMs are higher than that in homogeneous 
materials and that the influence of the material inhomogeneity on the stress intensity 
factors is more severe for a plane strain than for a penny-shaped crack. For further 
results see [18-25]. Also, for the solution of embedded crack problems in an FGM layer 
under mechanical or thermal loading see [26] and [27]. 

3.2      The Debonding Problems in FGMs 

Consider the crack problems shown in Figs, la and lb. Figure la describes the 
debonding problem in piecewise homogeneous materials, whereas Fig. lb refers to a 
FGM bonded to a homogeneous substrate. In both cases h=0 refers to an "interface 
crack". In terms of the unknown functions 

/,W = |-(v+-v-),   f2(x) = ^-(u+-u-)  , (18) 
ox ox 

in each case the formulation of the problem may be reduced to a system of integral 
equations of the form 

"Li 
?-+k'{x,t) + k£(x,t) 

t-x 
fj(t)dt = ^£-pl(x) 1 2/x,(0)   ' 

(i=l,2), -a<x<a (19) 
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where the kernels ktj are known functions which depend on h and the material parameters, 
ktf is associated with the infinite medium, ktf represents the geometry of the medium, and 

Pl(x)=Gyy(X,0)    ,   /?2(x)=CXy(X,0) (20) 

are the crack surface tractions which may be expressed in terms of the external load. The 
kernels k/ are bounded for all values of h. For h>0 the functions ktf are also bounded. 
Thus, for h>0 the crack is an embedded crack and (19) would lead to the asymptotic 
stresses given by (3) and (12) for problems described by Figs, la and lb, respectively. 
On the other hand, for h=0 in problem la the kernels kn

s and k2{ would become a 
Cauchy kernel (t-x)"1 and kn and k2f would degenerate to a delta function 8(t-x) [28], 
[29]. Consequently, in this interface crack problem the integral equations become one of 
the second kind leading to the well-known anomalous stress oscillation behavior very 
near the crack tips. 

For h=0 in problem lb, however, the leading terms of the kernels kf become 

7CY\t-x\ 

8  t-x 

Ki = ~K\ = +Tlos|'-x\,y = tan<t>0 , (21) 

which would indicate that (19) would remain to be an ordinary system of singular integral 
equations of the first kind and would have the asymptotic solution given by (12). It is, 
therefore, seen that the anomalous behavior of the crack tip stress oscillations may be 
eliminated by "smoothing" the material property distribution (or by removing the 
property discontinuity). A qualitative description of the interface crack geometries and 
the singular kernels lqf may be seen in Fig. 2. 

3.3      Cracking Perpendicular to Interfaces and Surfaces 

In ceramic and ceramic/metal FGM components generally a common mode of 
failure is surface cracking which could penetrate to the interface and cause debonding. 
The main problem here is assessing the influence of the material inhomogeneity on the 
fracture mechanics parameters (such as G and ki) for surface cracks and cracks 
terminating at an interface. Figures lc and Id show the crack geometry for the latter 
problem in piecewise homogeneous and in inhomogeneous materials. Because of 
symmetry, generally these are all mode I problems. Thus, if we define the unknown 
function and the crack surface traction by 

g(x) = — [v(*,+0) - V(JC,-0)] , p(x) = CTW (*,0) , a < x < b , (22) 
ox 

the integral equation for the general problem may be expressed as 
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1 + ks(x,t) + kf(x,t)] 
t — x 

1 + K 
g(t)dt = _—lp(jc) , a < x < b , (23) 

2fi2 

where, again, ks is associated with two bonded semi-infinite media, kf represents the 
geometry of the composite medium, and kf is always bounded. For an embedded crack, 
a>0 and ks is also bounded. However, for a=0, ks could be singular. In fact, for a=0 in 
piecewise homogeneous materials (Fig. lc) it is known that 

kAx,t) = ^+-^-T+-^-T , (0<(t,x)<b)  , (24) 
t + x    (t + x)      (t + x) 

CoA Os-A- 

where ci, C2, and c3 are bimaterial constants [30]. Note that as t and x approach the end 
point x=0, ks tends to infinity and, hence, would contribute to the singular behavior of the 
solution giving 

°9(r,0)=^gv(ß) , O<0<7T , (i,j = x,y) , 0<«<1 (25) 
r 

where gij are known functions, ki is a "stress intensity factor" and the power of stress 
singularity ool/2 for u,2>U-i and oc<l/2 for u.2<U.i, a=l/2 being the value for jJ.2=fXi- From 
the viewpoint of fracture mechanics, the consequence of having o*l/2 is that as the crack 
intersects the interface, the stress and deformation states would not remain self-similar 
and, hence, it would not be possible to use the fracture theories based on the energy 
balance concept to calculate a strain energy release rate or to use the stress intensity 
factors as the crack driving force. This, then, is the second anomalous behavior regarding 
the stress state near the crack tip in bonded dissimilar homogeneous materials. 

If we now "smooth" the material property distribution and assume that medium 1 
is a FGM (Fig. Id), it can be shown that for a=0 the leading terms of ks become [31] 

,  , dJ     d7x      dJx       , ,    .      . ,_,. 
ks(x,t) = —i-H—^-H-     3      +d4\og(t + x) (26) 

t + x    t + x    (t + x) 

where di.-.cU are bimaterial constants. Note that the kernel given by (26) is square 
integrable and, therefore, would have no contribution to the stress singularity at x=0. 
Consequently, the stresses would have the standard square-root singularity and, by 
smoothing the material property distribution through the introduction of FGM, the 
anomalous behavior of the stress state would again be eliminated. 

Figure 3 shows the mode I stress intensity factor for a=0 and p(x)=-ao in Fig. Id. 
The normalized stress intensity factors shown in the figure are defined by 

k(a) = k1(0)/o0&/2 , k(b) = kl(b)/a0S/2 , (27) 
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*, (0) = limV^cr.   (x,0) ,  *:, (b) = lim^2(x-b)a2yy (x,0)  . (28) 
x-40 " x-*b 

The shear modulus of FGM in Fig. Id is assumed to be 

Af1(x) = /£2exp(jSx) (29) 

where |i2 is constant.  It is thus seen that for ß-»°° |ii-»0 and the problem becomes an 
ordinary edge crack problem in a homogeneous half space for which 

Jfc, (0) -> 00 , k, (b) -»1.586kr0 Vfc/2  . (30) 

For ß=0 the medium is homogeneous and 

kx(0) = kx{b) = o04bl2 . (31) 

In the other limiting case of ß= -°°, |Xi becomes infinite and for the resulting problem of a 
crack terminating at the interface we have 

*,(0) -» 0 , *,(p) -> 0.8710<T0 JbTZ  . (32) 

The analytical details and further results for this problem may be found in [31]. 

3.4      The End Effects 

Generally the stress-free ends in bonded materials are locations of high stress 
concentrations and potential debonding fracture. In bonded dissimilar homogeneous 
materials the point at which the interface intersects the free boundary (or the apex of two 
90 degree bonded wedges) is, in fact, a point of singularity near which the stress state is 
given by [32] 

<7„(i\0) = -^-Ftf(0) , (i,j = x,y) , 0<j3<l/2 , (33) 

when (r,8) are the polar coordinates, ß and Fy depend on the bimaterial constants and K is 
a measure of the load amplitude or stress intensity. For ß to be positive the material 
properties need to be discontinuous across the interface. In FGM coatings, since the 
material properties are made continuous through composition grading, it can be shown 
that the singularity ß becomes zero and, consequently, the stresses become finite. 

The effect of stress-free ends is analytically studied in [10] as a part of the general 
problem of a crack in a layered medium perpendicular to the boundary. The geometry of 
the problem may be described in Fig. Id in which the materials 1 and 2 have finite 
thicknesses and contain collinear cracks along y=0, -hi<ai<x<bi<0<a2<b2<h2. For ai=-hi 
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or b2=h2 we have surface cracks whereas for bi=0=a2 crack crosses the interface. From a 
viewpoint of stress singularity the latter case corresponds to a stress-free end. It was 
shown in [10] that in this case the power of singularity is indeed zero, meaning that the 
stresses are bounded. For all possible crack combinations detailed results are given in 
[10]. Reference [10] also gives the solution of some crack/contact problems which may 
arise under thermal or residual stresses or under certain bending/membrane load 
combinations where the medium may be under compression on the surface and tension in 
the interior region. 

Figure 4 describes the geometry of a specimen considered as an example. The 
composite medium is assumed to undergo a homogeneous temperature change AT. The 
problem is one of plane strain. The substrate is a nickel-based superalloy (Rene 41) and 
the coating is either a piecewise homogeneous or a functionally graded metal/ceramic 
layer, the ceramic component being partially stabilized zirconia (PSZ). The 
thermomechanical constants of the two materials are 

Es=219.7 GPa, vs=0.3 , os=1.67xlO-5oK-1 , 

Ec=151 GPa, vs=0.3 , oc^lO^K 

where the subscripts s and c refer to the substrate and the ceramic, respectively. The 
stepwise variation of the material properties in piecewise homogeneous coatings is shown 
in Fig. 5. Some calculated results are shown in Figures 6-10. For the FGM coating used 
in the example, the modulus variation is given by 

Es, 0<y<0.0125 m. 
E(y)= { 

Ec+(ES-Ec)(
a°n

1^~3;)p . 0.0125<0.0145 m. 

The same expression is used for the thermal expansion coefficient, a. Figure 11 
shows the thickness variation of the stiffness E(y) (or the thermal expansion coefficient 
a(y)) for the three FGMs considered, namely the metal-rich, linear and ceramic rich 
compositions. 

Figures 6 and 7 show the interface stresses Gyy(x,h2) and Gxy(x,h2) for the 
piecewise homogeneous coating. Note that since the material properties are 
discontinuous for y=h2, the interface stresses become unbounded for y=h2, x-»J. The 
corresponding results for the FGM coatings are shown in Figures 8 and 9. It may be 
observed that as a result of material property smoothing (or eliminating the property 
discontinuities), the stress singularities are eliminated and at the point y=h2, x->Z 
Gyy(x,h2) becomes bounded and Gxy(x,h2) becomes zero. One may also observe that, 
except for values of x near the end (x=Z), the behavior of interface stresses for piecewise 
homogeneous and FGM coatings are quite similar. Figure 10 shows the variation of the 
tensile stress Gyy(l,y) at the ends of the specimen for 0<y<hi+h2. Note that at the 
interface y=h2 there is a stress concentration and the stress concentration factor Cyy/Go 
decreases with increasing metal content of the coating. Further results on this problem 
may be found in [7]. 
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3.5 The Effect of Material Orthotropy 

Due to the nature of processing techniques used, FGM coatings are seldom 
isotropic. For example, of the two most commonly used techniques, invariably the 
thermal spray gives a lamellar and electron beam physical vapor deposition technique 
gives a columnar structure. These structures could clearly be modeled as material 
orthotropy. From a standpoint of failure mechanics, the main problem is the 
investigation of the effect of material orthotropy as well as that of material 
inhomogeneity on, for example, fracture mechanics parameters. The problem is 
intractable if the elastic parameters are assumed to be independent functions of the space 
variables. However, (in the case of plane elasticity problems) by replacing the four 
engineering parameters En, E22, G12 and \u by a stiffness parameter E=7EnE22 , a 

stiffness ratio 5 = (EU/E22)
114, an averaged Poisson's ratio v = >/v^2v^\ and a shear 

parameter KO = (£72G12)-V, assuming that v is constant and En, E22 and G12 vary 
proportionately, and by using 8 as a scaling constant for the coordinates, displacements 
and stresses, it was shown that the problem becomes tractable. The solution of mode I 
crack problem is given in [22] and [24]. The results show that in the mode I problem the 
stress intensity factors and the strain energy release rate depend on material 
inhomogeneity and on the elastic parameters v and K> but not on E and 8. The mixed 
mode crack problem for an orthotropic inhomogeneous medium is studied in [23]. In this 
case the results depend on 8 as well as on v and Ko- 

3.6 Crack Tip Stress Fields - Isochromatics 

Photomechanics in general and photoelasticity in particular has been used very 
extensively in fracture mechanics primarily to evaluate the stress intensity factors. This 
is usually done by comparing the quantitative information given by experimentally 
determined isochromatic fringes with the maximum shear stress calculated in terms of 
stress intensity factors from the asymptotic expressions for small values of r near the 
crack tip. In homogeneous materials the technique seems to have been very successful, 
especially in three-dimensional problems with relatively complex crack geometries. 
Recent interests in the so-called functionally graded materials, specifically in 
metal/ceramic composites with smoothly graded thermo-mechanical properties, raise the 
question of the influence of the material inhomogeneity on the asymptotic behavior of 
stress state near the crack tips and on the interpretation of the experimental results 
obtained from photomechanics in terms of such fracture mechanics parameters as stress 
intensity factors and the strain energy release rate. Some of these concerns are addressed 
in this project. 

It has been shown that the asymptotic behavior of stresses and displacements near 
the crack tip in inhomogeneous materials is identical to that in homogeneous materials 
provided the crack is planar, the crack front is a smooth curve and there are no 
discontinuities in the elastic properties at the crack front (see Section 3.1). However, this 
identity is valid only for the leading term and only in limit as r tends to zero (see 
equations 3 and 12). Consequently, for r > 0 in graded materials isochromatics could be 
distorted.   Theoretically in inhomogeneous materials, even for small values of r, the 
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isochromatics corresponding to a given maximum shear stress obtained from the full field 
solution and that determined by using the asymptotic expressions may not be the same. 
Since no analytical closed form solution exists for any plane elasticity problem in an 
inhomogeneous medium containing a crack, to investigate some of these questions one 
needs to consider a problem which can be solved quite accurately with a minimal 
computational effort. Such a problem is the mode I collinear plane crack problem for a 
graded medium with elastic properties varying in the direction parallel to the cracks and 
subjected to fixed grip loading perpendicular to the cracks [24]. The problem is reduced 
to an integral equation the kernel of which is evaluated in closed form; and hence the full 
field solution can be obtained to any desired degree of accuracy. After giving some 
results regarding the dependence of the stress intensity factors on the material 
inhomogeneity parameter, material orthotropy and relative dimensions, full field and 
asymptotic isochromatics are separately calculated at the leading and trailing crack tips 
and various comparisons are made with the results obtained from the corresponding 
homogeneous, isotropic elastic medium. The details of the collinear crack solution is 
given in [24] (see the ARO Technical Report P. 19). 

The full-field results for isochromatics obtained from 

(a   -c   V 
max 

W + CT1 04) .2 

are given in Figures 12-19 and the comparison of full field and asymptotic results is 
shown in Figures 20-25. In this problem it is assumed the an isotropic inhomogeneous 
elastic medium contains a crack along -a<x<a, y=0 and is loaded through fixed grip 
perpendicular to the plane of the crack. The material inhomogeneity is defined by 

E(x,y) = E0e
ca (35) 

where oca is the dimensionless inhomogeneity parameter. Thus, the load amplitude is 
£ (x,+°°) = e0 and the stresses are normalized with respect to £oE0. For reference, 
Figure 12 shows the isochromatics obtained from the closed form plane strain full-field 
solution of a cracked homogeneous plane. The curves show the lines of constant 
maximum shear stress Tmax around the crack region. Note that the magnitudes of Tmax 
become greater as the crack tips are approached. The corresponding results for 
Tmax/eoE0=0.25, 0.35, 0.5 and 1 in an inhomogeneous plate with cta=0.25, 0.5 and 1.0 are 
given in Figures 13,14 and 15, respectively. In these figures Tmax/eoEo^.25 is shown by 
a dashed line for clarity. For relatively small values of %mj£^0 these figures show 
clearly the distortion of the isochromatics. Figures 16-19 show the effect of the material 
inhomogeneity parameter oca on isochromatics for fixed values of Tmax/eoEo=0.25, 0.35, 
0.5 and 1.0 where oca=0 given by the dashed line corresponds to a homogeneous medium 
and is depicted in Figure 12. Note that the isochromatics take the shape of familiar loops 
only for higher values of Tmax- 

For relatively high values of Tmax the comparison of full-field and asymptotic 
results is shown in Figures 20-25.   Figures show the effect of material inhomogeneity 
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constant (oca=0, 0.25, 0.5,1.0) on isochromatics near the right and left crack tips (i.e. near 
y=0, x=a and x=-a) for fixed values of Tmax/£oE0=l, 2, 4, 6 and 10. In these figures the 
asymptotic results are the first term approximations and, except for the stress intensity 
factor, are identical to homogeneous results (shown by oca=0). Note that the material 
inhomogeneity intensifies the stress state at the right crack tip (x/a=l) and diminishes it at 
the left (x/a=-l). Also note that the discrepancy between asymptotic and full-field results 
at the right tip is greater than at the left tip and decreases as -Wx increases (or as the crack 
tip is approached). Finally, for a fixed value of oca=0.5 Figure 25 shows the comparison 
of isochromatics obtained from the full-field (full lines) and asymptotic solutions (dashed 
lines). 

The figures show that even for relatively large xmax's, in FGMs the distortion in 
full-field isochromatics from the symmetric loops corresponding to homogeneous 
materials and given by the asymptotic solutions could be quite significant. 

3.7      Benchmark Solutions/Fracture Mechanics 

Topics studied in this project may generally be classified in two main groups. 
The first is the development of fundamental concepts and that of the related analytical or 
numerical methods of solution. The second deals with the identification and solution of a 
series of benchmark problems that may have relevance in applications. Sections 3.1 
through 3.6 of this report deals with the fundamentals of fracture mechanics of FGMs. In 
this section some specific benchmark problems studied in the program will be very 
briefly described. The detailed results have been presented in ARO Technical Project 
Reports, Journal articles and articles in proceedings listed in Section 8 of this report. 

3.7.1   Fracture under thermal stresses 

In FGM layers or FGM coatings on homogeneous layers very often the fracture 
process begins with the formation of microcracks at corrosion pits, surface flaws, or 
severe stress concentrations. Generally a number of microcracks coalesce and form a 
dominant surface crack, which would then propagate subcritically under cyclic or 
sustained loading. In many high temperature applications the loads are thermally 
induced. Since the medium is inhomogeneous, even a constant change in temperature 
would cause thermal stresses leading to fatigue, corrosion, or creep crack growth. In the 
process of subcritical crack propagation, the stress intensity factor at the crack tip is the 
primary crack driving force. In Reference [PI]* the basic surface crack problem in a 
metal/ceramic FGM layer under a homogeneous temperature change or a steady-state 
heat conduction is considered. It is assumed that the thermomechanical properties of the 
medium vary in thickness direction only. In this problem the main results are the mode-I 
stress intensity factor calculated as a function of the dimensionless length parameters, 
material inhomogeneity constants and the temperature amplitudes. The results are given 
for subsurface as well as surface cracks (see the reprint enclosed for details). In this 
problem, since the stresses are statically self-equilibrating, the thermal stresses in the 

* References [PI] through [PI9] refer to the articles and Technical Reports listed in 
Section 8, "List of Publications" 
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interior and that near the surfaces would have opposite signs. Thus, a peculiarity of the 
problem is that, depending on the crack tip location, the crack may propagate under 
heating or cooling cycle. This generally requires the solution of a nonlinear crack/contact 
problem to calculate the crack driving force. The solution of this problem is also 
described in [PI] and some examples are given. The technique used in [PI] is analytical 
and the results are intended to provide a benchmark for the numerical solution of more 
complicated crack problems. 

The second thermal stress problem studied is concerned with the debonding of a 
FGM coating from a homogeneous substrate. The substrate is metal (generally a 
superalloy) and coating is a metal/ceramic composite with graded volume fractions (in 
the examples considered Rene 41/partially stabilized zirconia). In piecewise 
homogeneous layered materials with free edges the points of intersection of the interfaces 
with the boundaries are known to be points of stress singularity, and hence, natural 
locations of debonding crack initiation [7]. These singularities can be eliminated by 
removing the material property discontinuities through composition grading. However, 
even in FGM coatings under thermal loading these points still remain to be locations of 
relatively high stress concentrations and, consequently, likely sites of interface crack 
initiation. This problem of interface cracking in a coated medium with free ends under a 
uniform temperature change was considered previously [P6]. In the current study 
described in [P2], to simulate the practical applications somewhat more closely and 
particularly to investigate the effect of partial thermal insulation along the crack surfaces, 
the coated medium with stress-free ends under steady-state heat flow is considered. It is 
assumed that the medium contains two symmetrically located edge cracks along the 
interface and is under plane strain conditions. The surface of the coating on top is 
exposed to a high temperature convective environment, the surface of the substrate on the 
bottom is forced-cooled and the ends are under natural convection. To model the partial 
insulation on the crack surfaces a "heat conductivity index" k is introduced (0<k <1). 
The limiting values k*=0 and k*=l represent, respectively, the perfect insulation and 
perfect conduction along the crack surfaces. 

It was previously shown analytically that in bonded materials by removing the 
material property discontinuities through composition grading, the anomalous behavior of 
stress and displacement oscillations near the interface crack tip is also removed and the 
asymptotic behavior of the stress state at the crack tip becomes identical to that of a crack 
in a homogeneous medium. Thus, asymptotically the interface crack problem under 
consideration may be treated as a conventional plane strain crack problem with modes I 
and II stress intensity factors and the strain energy release rate as the primary fracture 
mechanics parameters. The main variables in this problem are the material 
inhomogeneity constants and the crack length. The calculated quantities include the 
temperature distribution, the total heat flow, the stress intensity factors, the strain energy 
release rate and the crack opening displacement. The relative crack opening is needed to 
verify the fact that there is no material interference along the crack surfaces (for details 
see the technical report enclosed). 

The axisymmetric debonding problem of graded thermal barrier coatings under a 
uniform temperature change is considered in [P8] (see also Appendix B). It is assumed 
that the disk-shaped specimen consists of a nickel-based superalloy substrate, a NiCrA/Y 
bond coat and a graded PSZ/NiCrA/Y thermal barrier coating (TBC). The fracture starts 
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from the stress concentration at the cylindrical surface along TBC-Bond coat interface 
and propagates in a plane perpendicular to the axis. The main variables in the problem 
are the material inhomogeneity parameters, size and location of the crack and the relative 
dimensions of the specimen. The method of solution and the results are described in [P8] 
and Appendix B. 

3.7.2   The influence of material orthotropy 

Generally, in FGM coatings the subcritical crack propagation and spallation- 
related failures involve two types of cracks, namely a surface crack growing 
perpendicular to the boundary and a debond crack parallel to the interface. This is partly 
due to the fact that, because of the techniques used in processing, the graded medium is 
seldom isotropic and the two crack planes mentioned usually correspond to the principal 
planes of material orthotropy and, consequently, to relatively weak fracture planes. For 
example, the materials processed by using plasma spray technique have generally a 
lamellar structure. Flattened splats and relatively weak splat boundaries provide an 
oriented material that has a higher stiffness and weaker cleavage planes parallel to the 
surface. On the other hand, graded materials processed by using an electron beam vapor 
deposition technique would invariably have a columnar structure, resulting in a higher 
stiffness in thickness direction and weaker fracture planes perpendicular to the boundary. 
Clearly, in studying the fracture mechanics of these materials assuming the medium to be 
isotropic would be rather unrealistic. A closer approximation would be to assume that 
the inhomogeneous medium is orthotropic with the principal directions parallel and 
perpendicular to the boundary. 

In FGM coatings since the material property grading is usually in the thickness 
direction and dominant components of the residual and thermal stresses are generally 
parallel to the boundary, in the first crack problem of interest, namely in the surface crack 
problem the plane of the crack is a plane of symmetry in material properties as well as in 
loading. Consequently, the resulting problem is a mode I crack problem for an 
orthotropic inhomogeneous medium. Such a problem is considered in [P3] which is 
solved for fixed grip loading away from the crack region and for polynomial crack 
surface tractions in order to accommodate more general loading conditions. It is assumed 
that xi and X2 are the principal axes of orthotropy, the crack is located along X2=0, Ixika 
and material properties vary in xi direction only. In the crack problems for orthotropic 
inhomogeneous materials analytically the problem is intractable if all material parameters 
are assumed to be variable. However, by replacing the four engineering parameters En, 

E22,   G12,   and   V12   by   a   stiffness   parameter   E = ^EUE22 ,   a   stiffness   ratio 

6 = (En/E22)
114,    a    Poisson's    ratio    v = ^/Vj2v21     and    a    shear    parameter 

KO =(E/2Gn)-v, assuming that v is constant and the moduli En, E22, G12 vary 

proportionately, and by using 8 as a scaling constant for the coordinates, stresses and 
displacements, it is shown that the problem becomes tractable and one can study the 
influence of the material orthotropy on the stress intensity factors and the crack opening 
displacement. The solution of mode I problem is given in [3]. Some of the main 
conclusions drawn from this study is that the results depend on the inhomogeneity 
parameter a  and the elastic constants v  and KQ but not on E0  and 5,  where 
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E(xi)=E0exp(axi), and the stress component G22(xi,0) and the mode I stress intensity 
factors at the crack tips Xi=+ a are invariant with respect to a 90° material rotation (see 
[P3] for details).   It is further shown that the results are relatively insensitive to the 
change in v. 

The mixed mode crack problem that provides a benchmark for debonding 
problems is considered in [P4]. In this problem again the crack is located along x2=0, 
Ixika and the same assumptions as in the mode I crack problem are made with regard to 
the material parameters and scaling. However, here it is assumed that the material 
properties vary in a direction perpendicular to the plane of the crack. Hence, the plane of 
the crack is no longer a plane of symmetry and, consequently, the problem is one of 
mixed mode. The solution is obtained for polynomial crack surface tractions 
a22(xi,0)=cro(xi) and CI2(XI,0)=TO(XI), Ixka. The main calculated results are the modes I 
and II stress intensity factors, the strain energy release rate and the crack opening 
displacement. Other than the load amplitude, the primary variables are the material 
inhomogeneity parameter a, the shear parameter K«, and the stiffness ratio 8. Again, the 
results are shown to be relatively insensitive to the variation in Poisson's ratio v. It is 
found that generally the stress intensity factors increase with increasing a and Ko and 
with decreasing 8. The main results are described in [P4]. Extensive numerical results 
are presented in the technical reports [P14] and [PI5]. 

3.7.3   Spoliation of FGMcoatings 

The basic benchmark problem considered in [P10] consists of a penny-shaped 
crack parallel to the surface of a semi-infinite graded medium. The problem is an 
axisymmetric mixed mode problem in which the crack surfaces may be subjected to shear 
as well as normal tractions. The main objective of the study is to determine the influence 
of material inhomogeneity constants and the dimensionless length parameter h/a on the 
stress intensity factors, where h is the distance of the crack from the surface and a is the 
radius of the crack. The problem is solved analytically by reducing it to a system of 
singular integral equations. The results are obtained for polynomial normal and shear 
tractions acting on the crack surfaces. As expected, generally the stress intensity factors 
increase with decreasing h/a and increasing material inhomogeneity. In addition to 
extensive results regarding the stress intensity factors, [P10] also includes the 
corresponding crack opening displacements (see, also, Appendix D). 

A nonlinear spallation model is considered in [P7] (see, also, Appendix A). It is 
assumed that the medium consists of a substrate and an FGM coating, contains an 
interface crack and the coating is subjected to mechanically or thermally-induced 
compressive loading parallel to the interface. First by using a nonlinear continuum 
theory the problem is reduced to an eigenvalue problem and the instability load is 
evaluated analytically. A finite element technique is then developed to solve the elastic 
post-buckling problem. The strain energy release rate and stress intensity factors are 
directly calculated from special crack tip enriched elements. 
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4. CONTACT MECHANICS OF FGMS 

4.1      Basic Concepts 

The contact mechanics for a graded elastic medium acted upon by a rigid stamp of 
arbitrary profile is described in Appendix C. In the most general case of two elastic 
inhomogeneous solids in contact in the presence of friction, the integral equation of the 
problem may be expressed as follows: 

B)p(f) Ap(x) + - \^^dt+ \k(x,t)p(t)dt = f(x) ,a<x<b 
7t JJ-X J„ 

(36) 

\p(t)dt = . (37) 

A = £ 
V(0)-l   y(0)-Q 
^ 4/x+(0)       4/T(0) 

g=y+(0) + l| y-(0) + l 
4,u+(0)      4/T(0) 

(38) 

where P is the resultant compressive force, p(x)=-Oyy(x,0), and q(x)=T|p(x)=-cxy(x,0) are 
the contact stresses, T| is the coefficient of friction, u.+(y), K+(y), |X"(y), K"(y) are the elastic 
parameters of the contacting solids and -a<x<b, y=0 is the contact area (see the insert in 
Fig. 30). It is assumed that the curvatures of the contacting solids near the contact zone 
are smooth a+b=^«Ri, where Ri and R2 are the radii of curvature (Fig. 26), and both 
curvatures may be positive or one may be negative. Defining now the sectionally 
holomorphic function 

7t JJ-Z 
(39) 

and by using the Plemelj formulas 

2ip(x) , -a<x<b 
F+(x)-F-(x)=    { (40) 

0, -oo<x<-a, b<x<°° 

2 f Pit) , — \I-^-Ldt , -a<x<b 
Jt JJ-x 

F+(x) + F-(x) =     { (41) 
4iF(x) , —oo<x<—a , b<x<> 
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the fundamental solution and the fundamental function of (36) may be obtained as 
follows: 

X(z) = (z-b)a(z + a)ß , (42) 

w(x) = (b-x)a(x+a)ß  , (43) 

+ N , -l<Re(a)<l  , (44) 1 ,    (A-iß} 
a = —:log 

2m     [A + iB 

1 .   (A-iB 0= log 
2m     [A + iB 

+ M ,-l<Re(0)<l . (45) 

In (44) and (45) N and M are arbitrary positive or negative integers or zero. The index of 
the problem is defined by 

K0=-(a + ß) = -{N + M)  . (46) 

In the problem under consideration the index is +1, 0 or -1 and is determined from 
physical considerations. From (44) and (45) it may be seen that 

a = --+N , ß=- + M ,0 = aictm- . (47) 
n n A 

After determining the fundamental function w(x), the solution of (36) may be 
expressed as 

p(x)=g(x)w(x), -a<x<b (48) 

where g(x) is an unknown bounded function and is dependent on the geometry and 
material properties of the contacting media. The arbitrary constants N and M are 
determined in such a way that, for example, at the end point x=b, Re(a)>0 if the contact 
is smooth and Re(oc)<0 if one of the contacting solids has a sharp corner (implying stress 
singularity). 

4.2      Benchmark Solutions 

The detailed solution of the contact problem for a rigid punch acting on a semi- 
infinite inhomogeneous elastic medium is given in [PI6]. The contact problem for a rigid 
punch and a homogeneous medium coated by a graded layer is considered in [P9] (see 
also Appendix C). In this section some limited results for two contacting elastic solids 
are described. 
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Figure 26 shows the pressure distribution between two homogeneous dissimilar 
elastic cylinders under frictionless contact obtained by assuming plane strain conditions. 
Here the main variables are the stiffness ratio T = ß*/ß~  and the curvature ratio 
%=Ri/R.2. In this frictionless problem a=b which is unknown and is determined from 
(37). Similar results for two graded elastic cylinders are given by Figures 27. In this 
example it is assumed that 

ß+ (y) = ft* exp(y+x) ,p~(y) = p; exp(y"x) (49) 

and, again, I =b+a. 
Figures 28-30 show the effect of friction on the contact stress distribution in two 

contacting inhomogeneous elastic cylinders where it is assumed that Y~=-Y+ and Ri=R2- 
For a constant coefficient of friction TI=0.3 and Ri=R2, Figures 31 and 32 show the effect 
of the material inhomogeneities y+ and y and stiffness ratio T on the pressure distribution. 

The effect of negative curvature on the contact stresses is shown in Figures 33-36. 
Figure 33 shows p(x)=-CJyy(x,0) for homogeneous cylinders. For a constant curvature 
ratio the effect of stiffness ratio T and coefficient of friction T| is shown in Fig. 34. Some 
results for inhomogeneous cylinders for constant curvature ratio % and constant 
coefficient of friction T| are shown in Figures 35 and 36. 

5.        ELASTODYNAMICS OF GRADED MATERIALS 

A benchmark problem concerning the elastodynamics in graded materials was 
considered in [P17] (see, also [P5], [P7] and Appendix E). The problem is a one- 
dimensional elastodynamic problem for a FGM plate having free-free or fixed/free 
boundary conditions. The former may approximate the impact problem in an 
unconstrained layer and the latter may simulate a FGM layer bonded to a very stiff 
substrate. The impact loading is approximated by a rectangular compressive pulse of a 
very short duration (0.2 u. sec). Numerical results are obtained for a 5 mm. Thick 
Nickel-Zirconia FGM layer, two hypothetical FGMs with (Ei/E2)=(l/2), (pi/p2)=l/3 and 
(Ei/E2)=2, (pi/p2)=3 and, for comparison, a homogeneous Ni plate, where E and p are the 
Young's modulus and mass density, respectively. 

For the general variations in density p(x) and stiffness E'(x), (E'=E(l-v)/(l+v)(l- 
2v), the closed form solution is not possible. However, one can obtain an asymptotic 
solution which appears to be highly accurate. 

The problem is first solved by assuming E'(x)=E0exp(ax),p(x)=p0exp(ocx) giving 
a constant propagation velocity c = ^E01 p0 . In this case the solution can be obtained in 
closed form as well as asymptotically. The comparison of the two results shows that the 
error in a simple one term asymptotic approximation is less than 2% and a six digit 
accuracy is obtained by retaining the first six terms in the expansion. Next, a more 
general material property distribution is considered by assuming E'(x)=E0(ax+l)m and 
p(x)=p0(ax+l)n where Eo=E'(0), po=p(0) and a, m and n are arbitrary constants. It was 
shown that an estimate of maximum (spallation) stress may be obtained without solving 
the detailed wave propagation problem.   This estimate is [aXx(x)]max=<Jo9o(x) for the 
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free/free case and [axx(x)]max=2a09o(x) for the fixed/free case, where a0 is the amplitude 
of the input pulse and (p0(x)=[(ax+l)/a^+l)](m+n)/4, i being the thickness of the layer 

(0<x<-O. 
In the general problem for which no closed form solution is feasible, it is shown 

that one may use the total energy balance as the criterion for the accuracy of the results 
(or for the convergence of extended asymptotic solutions). In the nondissipative system 
under consideration the conservation of energy requires that at any given time the total 
work done by the external loads be equal to the sum of kinetic and strain energies. The 
calculated results show that the error in this comparison is less than three percent which 
is within the acceptable range. 

6.  CONCLUDING REMARKS 

From the viewpoint of failure mechanics the functionally graded materials seem 
to offer certain advantages among which one may mention the following: 

• By eliminating the discontinuity in material property distributions, the 
mathematical anomalies regarding the crack tip stress oscillations for the interface cracks 
and the non-square-root singularities for the cracks intersecting the interfaces are also 
eliminated. In practice the importance of this result lies in the fact that in FGMs one can 
now use the crack tip finite element modeling developed for the ordinary square-root 
singularity and apply the methods of the energy balance-based theories of the 
conventional fracture mechanics. 

• Use of FGMs as coatings and interfacial zones would reduce the 
magnitude of the residual and thermal stresses. 

• Use of FGM coatings and interfaces would eliminate the stress 
singularities at the points of intersection of interfaces and stres-free ends in bonded 
materials. 

• Replacing homogeneous coatings by FGM layers would both enhance the 
bonding strength and reduce the crack driving force. 
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Figure 2 Singular behavior of the irregular kernels for an interface crack in bonded dissimilar 
materials. 
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Figure 5  Stepwise distribution of the elastic modulus for a single, two and four layer 
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Spallation of FGM Coating; 
A Nonlinear Model 

T.-C. CHIU and F. ERDOGAN 

ABSTRACT 

In this study the problem of FGM coating with an interface crack subjected to 
compressive load parallel to the free surface is considered. First by using a nonlinear 
continuum theory the problem is reduced to an eigenvalue problem and the 
instability load is evaluated analytically. Finite element technique is then used for 
solving the elastic post-buckling problem. The strain energy release rate and stress 
intensity factors are directly calculated from special crack-tip enriched finite 
elements. Results obtained for a sample thermal buckling problem are presented and 
discussed. 

INTRODUCTION 

Requirements for the protection of hot section components in many high 
temperature applications such as earth-to-orbit winged planes and advanced turbine 
systems have led to the application of thermal barrier coatings (TBC) that utilize 
ceramic coatings over metal substrates. An alternative concept to homogeneous 
ceramic coatings is the functionally graded materials (FGM) in which the 
composition of the coating is intentionally graded to improve the bonding strength 
and to reduce the magnitude of the residual and thermal stresses. Inherent in such 
layered material systems is a sensitivity to thermally or mechanically induced 
compressive loading which may result in interface crack growth that eventually leads 
to spallation. The debonding and spallation problems are also observed in other 
layered material systems such as surface coatings in electronic devices and fiber 
reinforced composite laminates. 

The technical importance of understanding the delamination and spallation 
problem has recently received a great deal of attention and many investigations have 
been performed in composite laminates and TBCs (e.g., [l]-[4]). It is often observed 

T.-C. Chiu and F. Erdogan, Department of Mechanical Engineering and Mechanics, Lehigh 
University, Bethlehem, PA 18015 
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Figure 1      Functionally graded coating bonded to homogeneous substrate 
with an interface crack subjected to uniform compressive strain. 

that spallation occurs as an interface crack reaches a critical size and kinks out of the 
interface into the coating. The failure of the coating may then be examined either by 
comparing the calculated strain energy release rate G with the mode mixity- 
dependent fracture toughness Gc or by using a maximum stress-based rupture theory 
in the debonded part of the coating. In this paper an FGM coating bonded to a 
homogeneous substrate containing a through-the-width interface crack is 
investigated. By using a perturbation technique the nonlinear continuum problem is 
analyzed and the stability load is obtained analytically. The nonlinear elasticity 
problem is solved by using finite element technique and the strain energy release rate 
and stress intensity factors are calculated. 

STABILITY ANALYSIS 

FORMULATION OF THE PROBLEM 

The plane strain problem described in Figure 1 for a layered system subjected to 
a uniform compressive strain e0 is considered. The medium consists of an FGM 
coating of thickness h bonded to a semi-infinite substrate and contains an interface 
crack of length 2a. The compressive strain e0 represents the magnitude of the 
external load. It is assumed that the substrate is homogeneous with elastic constants 
ßi,nu the coating is inhomogeneous with elastic parameters /x2, K2, and fj,2 is 
approximated by 

fr(y) = /iiexp(72/) (1) 

where ß{ is the shear modulus, nt = 3 - Av{ for plane strain, v{ being the Poisson's 
ratio. The subscripts, i = 1 and 2, denote the substrate and coating, respectively. 
From the mathematical theory of elastic stability [5], the governing equations may 
be expressed as 

(K+1)^ + (K D^ + 2:** 
dy2       dxdy + 7(«-l) 

-8e0 

duj     dvi_ 

dy     dx 
K — 1 \ d2Ui 

(2a) 

K + lJ dx2 = 0, 
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.      „. d2Vi     ,      „. d2Vi    n d
2U{        .„      . dui       .      ,s9v{ («-!)_ + («+!)—+ 2— +T(3-K)_ +7(K + 1)^        (2b) 

where u{ and *;< are the displacement perturbations from the equilibrium state in x- 
and y-directions, respectively. Equations (2) may be solved by using Fourier 
transforms with the following boundary and continuity conditions: 

a2yy(x, h) = 0, a2xy(x, h) = 0,  - oo < x < oo, (3a) 

<Tlyy(X,     -   0)   =    <Tlyy(X,     +   O),     <T Uy(X ,     ~   O)    =    <T2xy(X ,    +   O),        ~   OO    <   X    K   OO, (3b) 

0"iw(z. - 0) = 0, <Tiiy(x, - 0) = 0,  - o < x < a, (3c) 

Ui(x, - 0) = u2(x, + 0), ^(x, - 0) = v2(x, + 0), |x| > a. (3d) 

After some analysis the related mixed boundary value problem may be reduced to 

" / OTT" + 9i^ *)]/i(*)d* = 0, t = 1,2,   - a < x < o, (4) 

[ ft(t)dt = 0,i =1,2, (5) 
J —a 

where 

/i(x) = -r-fete, + 0) - Ui(x, - 0)1,  - oo < x < oo, (6a) 
ax 

/2(x) = —[u2(x, + 0) - «i(x, - 0)],  - oo < x < oo, (6a) 

and the functions gtj (i,j = 1,2) are square integrable in - a < (x, t) < a and do 
not contribute to the singular nature of the solution. Since the Cauchy kernels 
shown in (4) lead to the conventional square-root singularity for /, and f2, it can be 
shown that the solution of the integral equations (4) satisfying (5) is of the form 

Ä,)"Xm,?*|Ii©''"w (7) 

where the orthogonal functions T0, Tu ...are Chebysheb polynomials of the first 
kind and T0 = 1. By substituting (7) into (4), truncating the series at j = n, and 
using a suitable collocation technique, equations (4) and (5) may be reduced to a 
system of linear algebraic equations in the unknown coefficients A{j (i = 1,2, 
j = 1, ..., n). Since the right hand side of equations (4) is zero, the resulting linear 
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algebraic equations are homogeneous and have nontrivial solution only for certain 
values of e0, which are essentially the eigenvalues of the problem. Physically the 
smallest eigenvalue corresponds to the instability load. 

RESULTS AND DISCUSSION 

It was previously shown that in the crack problems for FGMs the effect of the 
Poisson's ratio is not very significant. Thus, in solving the isothermal nonlinear 
elasticity problem it is assumed thati/j =v2 = 0.3 or K = 1.8. Figure 2 shows the 
calculated critical value of e0 as a function of the length parameter h/a for some 
fixed values of yh. Note that yh is the measure of material inhomogeneity and that 
yh = 0 corresponds to a homogeneous medium containing a crack parallel to the 
surface. The FGM coatings for which yh = — 2.3026 and yh — 2.3026 correspond 
to ß2(h)/ß! = 0.1 and fi2(h)/fii = 10, respectively. Figure 3 shows the influence of 
material inhomogeneity on the critical strain for a fixed coating thickness/crack 
length ratio. Also shown in Figure 3 is the critical strain obtained from the plate 
theory. It may be seen that the critical strain given by the plate theory is symmetric 
in yh and becomes maximum for the homogeneous medium. The critical strain 
obtained from continuum theory shows the same trend except that the maximum is 
shifted slightly toward negative yh. Note that the relatively large difference 
observed between the critical strains obtained from the plate and continuum theories 
may be attributed to the fact that the plate is assumed to have "built-in" ends 
whereas the continuum theory imposes no such artificial constraints. 
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POST-BUCKLING ANALYSIS 

The post-buckling continuum problem is analyzed by using a geometrically 
nonlinear finite element program. Nonlinearity is accounted for by using the Green- 
Lagrange nonlinear strain-displacement relations. However, in order to extract the 
information for fracture mechanics analysis, it is assumed that the crack-tip region is 
locally linear and the crack-tip enriched elements [6] may be used for directly 
computing the stress intensity factors and strain energy release rate. The equilibrium 
state is determined by using the principle of stationary potential energy. An 
incremental-iterative procedure is used for solving the nonlinear equations. 

NUMERICAL EXAMPLE 

As an example the plane strain problem for a nickel-based Rene-41 substrate 
coated with zirconia, containing an interface crack and subjected to a uniform 
temperature drop AT is considered. It is assumed that the medium is stress-free 
before cooling down. The dimensions of the medium are shown in Figure 4 [7]. The 
relevant thermomechanical properties of the substrate and the coating are 

E5 = 219.7 GPa, vs = 0.3, as = 1.67 x lO^K1, 

Ec = 151 GPa, i/c = 0.3, ac = 1.0 x 10* K \ (8) 

where E, v, and a are the Young's modulus, the Poisson's ratio, and the thermal 
expansion coefficient, respectively. The uniform cool-down problem is also 
considered for the medium described in Figure 4 in which the homogeneous zirconia 
coating is replaced by an inhomogeneous FGM coating. A linear variation of the 
thermomechanical properties in the FGM coating is assumed, i.e., 
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Figure 8  Phase angle \|/ vs. temperature 
drop AT/T0 for the homogeneous .TBC. 

E{y) = 

Es + (Ee - Et){\^\       hs<y<hs + K, 

Es,        0<y< hs, 

a(y) = < 

v — h 
as + (ac - as)(        

s),       ht<y<hs + he, 

as,        0 < y < hs 

(9) 
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Figures  5-8   show  the results  for the thermal buckling  problem in  the 
homogeneous TBCs. The constants used for normalization in these figures are 

% = 100 K,        K0 = EsasToV*hc,       G0 = (1 - v2
s) Es 

(10) 

Due to the thermal expansion coefficient mismatch between the coating and the 
substrate, compressive residual stress is developed in the ceramic coating during the 
cool down process. As a result the coating buckles as the temperature change 
reaches a critical value. This may be observed in Figure 5 which shows the 
normalized "crack opening" S/hc at x = 0 as a function of AT/% for some fixed 
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values of a/hc. It is also observed in Figures 5 that instead of having an explicit 
buckling point, the "crack opening" is a smooth function of AT/T0. Figure 6 shows 
the normalized energy release rate G/G0 versus temperature drop for various values 
of a/hc. Also shown in Figures 5 and 6 are the results obtained by using plate theory 
with the assumption that the buckled coating has "built-in" ends. By examining 
Figures 5 and 6 it may be observed that the continuum model gives larger values of 
buckling deflection and strain energy release rate than the plate model. This may 
again be attributed to the higher degree of constraint in the plate model resulting 
from the assumption of "built-in" ends. Furthermore, as in the stability analysis 
(Figures 2 and 3) the buckling load for the continuum model is lower than that for 
the plate model. Figures 7 and 8 show, respectively, the normalized stress intensity 
factors and the phase angle as functions of AT/T0 for various a/hc. It is important to 
note that, since the crack is on a bi-material interface, the stress intensity factor is a 
complex quantity. From Figure 7 it may be seen that Kn is the dominant stress 
intensity factor. This implies the tendency for the crack Idnking into the coating and 
spalling the coating off. However, perhaps a more practical approach to studying the 
spallation process would be either comparing the calculated strain energy release 
rate G with the mode mixity-dependent fracture toughness Gc or analyzing the 
buckled part of the coating by using a maximum stress-based rupture theory. 

Figures 9 and 10 show 6/he and G/G0 versus AT/T0, respectively, in the cool 
down problem for the inhomogeneous FGM coating. For comparison the figures 
also show the results for the homogeneous TBC. Figure 11 shows the normalized 
stress intensity factors as a function of AT/T0 for various a/hc. Basically the results 
for FGM coating show the same trend as the results for homogeneous coatings. It 
is, however, observed that for FGM coating the buckling AT is much higher and 
6/hc and G/G0 are much lower compared with the homogeneous coating. This may 
be attributed to decrease in the magnitude of thermal residual stresses because of the 
smooth transition of thermomechanical properties in FGM. As a result the FGM 
coating is expected to be more resistant to cool down induced coating buckling and 
spallation. 
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Interface Cracking of FGM Coatings under 
Uniform Thermal Loading 

B. YILDIRIM and F. ERDOGAN 

ABSTRACT 

In this study the axisymetric crack problem for thermal barrier coatings 
(TBC) under a uniform temperature change is considered. It is assumed that the 
disk-shaped specimen consists of a nickel-based super alloy substrate, NiCrAlY 
bond coat and the TBC. The TBC itself is a two phase metal/ceramic functionally 
graded material (FGM). The metal phase is NiCrAlY and the ceramic is partially 
stabilized zirconia (PSZ). The composition of TBC varies from zero percent 
ceramic on the bond coat/TBC interface to hundred percent on the surface. The 
crack is a plane edge crack, starts at r=ro and propagates in a plane perpendicular 
to the axis of the cylinder, ro being the radius of the disk. Modes I and II stress 
intensity factors and the strain energy release rate are calculated for various sizes 
and locations of the crack. The main variables in the problem are the 
inhomogeneity parameter of the FGM coating, the size and the location of the 
crack and the relative dimensions of the specimen. The finite element method is 
used to solve the problem. The material property grading is accounted for by 
developing special inhomogeneous elements and the stress intensity factors are 
calculated by using enriched crack tip elements. 

INTRODUCTION 

In many high temperature applications such as advanced turbine systems 
and earth-to-orbit winged planes, to achieve higher efficiencies, higher velocities 
and longer lifetime the use of structural ceramics is becoming a necessity for the 
protection of hot section components. The ceramic thermal barrier coatings used 
for this purpose, however, seem to have some reliability and durability problems 
arising largely from high residual and thermal stresses, poor interfacial bonding 
strength and low coating toughness. Thus, the broader technical issues that need to 

B.Yildirim and F. Erdogan, Department of Mechanical Engineering and Mechanics, Lehigh 
University, Bethlehem, PA 18015. 
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be addressed in the development of thermal barrier coatings are the improvement of 
processing techniques from both performance and economic viewpoints, 
investigation of primary modes of failure, development of testing procedures for 
mechanical and strength characterization of the coatings and the development of 
appropriate life prediction methodologies [1], [2]. 

Because of the susceptibility of conventional homogeneous coatings to 
cracking and spallation, recently the materials research community has been 
exploring the possibility of new concepts in coating design. One such concept 
which may be used to overcome some of these shortcomings would be the 
introduction of an interfacial zone with graded thermomechanical properties 
between the coating and bond coat or the replacement of coating by a composite 
layer with a volume fraction varying between 0% ceramic and 100% metal on the 
interface and 100% ceramic and 0 % metal near the surface. Such particulate 
composites with continuously varying volume fractions are called functionally 
graded materials (FGMs) (see [3]-[6] for review and recent developments). The 
application of FGMs as coatings or interfacial zones seems to reduce the magnitude 
of residual stresses [7] and increase the bonding strength [8]. In FGM coatings, 
because of the gradual increase of the metal content in thickness direction, the 
toughness of the medium would also increase, thereby providing the layered 
material with a natural i?-curve behavior. 

In conventional ceramic coatings, even though one encounters a wide 
variety of failure modes, it is the interfacial fracture leading to spallation, which 
ultimately limits their performance. Both conventional and FGM thermal barrier 
coatings require a bond coat along the interface to shield the substrate against 
oxidation. In this study, edge cracking of a disk-shaped specimen of finite 
dimensions and stress-free ends subjected to a uniform temperature change is 
considered (Fig. 1). 

DESCRIPTION OF THE PROBLEM 

The axisymmetric problem considered is described^ in Fig. 1. The medium 
is free of any mechanical constraints, and a uniform temperature change AT is the 
only nonvanishing external load. 

FGM 

BOND COAT 

SUBSTRATE 

Aj = . 552mm 

$ /t2=. 184mm 

hj = 9.26mm 

 >r 

2r0 =80mm 

Figure 1. Geometry of the medium. 

(' The dimensions of the specimen used in this study approximately correspond to the dimensions of 
specimens studied by G. M. Newaz and his colleagues at Wayne State University, Detroit, 
Michigan. 
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At reference temperature To the bonded medium is assumed to be stress- 
free. The volume fraction of ceramic in the FGM coating is varied from 0% on the 
bond coat/coating interface at z =hi+h2 to 100% on the surface, at z =hj+h2+h3. 
The following models are used to represent the thickness variation of the 
thermoelastic parameters in the coating: 

E(z) = 'be 

EC + (E.-EC) 
rhl + h1 + h3-zxPx 

, fy + Aj <z<h1 + h2 + h3 

(1) 

a(z) = - be 

ac + (a6c-ac) 
rh1 + h2 + h3-z^P2 

, Ä,+Ä2<Z<Ä,+Ä2 + A3 

(2) 

v(z) = be 

vc+(vfic-Vc) 

,z<h, 
, hx<z<hl + hx 

(3) 

where subscripts s, be and c stand for substrate, bond coat and ceramic, respectively 
and pi (i=l,2,3) is the inhomogeneity constant, 0< /?,<oo. From (l)-(3) it may be 
seen that the limiting cases p,—0 and p/=co correspond to homogeneous TBCs 
having the properties of bond coat and ceramic, respectively. By adjusting this 
constant the ceramic-rich (pi>\) and metal rich (p,<l) compositions in the FGM 
coating may be simulated. Figure 2 shows a sample variation of the Young's 
modulus for various values ofpi=p. 

The thermoelastic material properties of ceramic, bond coat and substrate 
are given in Table 1, where E, v and a are Young's modulus, Poisson's ratio and 
thermal expansion coefficient, respectively. The material properties are known at 
three different temperatures [9]. Consequently, a best fit to the data appears to be a 
second degree polynomial for E(I) and a (T) and a bilinear function for v(T) 
(Figures 3-5). 
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RESULTS AND DISCUSSION 

The main results presented in this study are modes I and II stress intensity 
factors, Kj, Kn and the strain energy release rate G which are normalized with 
respect to (see Fig.l and Eq.l) 

K0 = Esa sATjnh;, G0 = (1 - v )^L 
Er 

(4) 

In the examples shown in Figures 6-8 the stress intensity factors and the 
strain energy release rate are given as functions of the crack distance h for a fixed 
crack length a=h3 and for various values of the inhomogenity constant/?. Note that 
at h=0 for all p and at h=h2 for p=<x> the crack lies along a bimaterial interface. 
Consequently, the stress singularity is complex, Kj and Kn are discontinuous but, as 
expected, G is continuous. Similar results are shown in Figures 9-11 for a crack 
length a=h3 /2. On the physical grounds the following observations may be made: 
In the composite medium under consideration for a uniform change in temperature 
the stresses are generated by the mismatch in the thermal expansion coefficients 
and the net ligament stresses in the crack plane are statically self-equilibrating. 
Therefore, as the crack plane approaches the free surface, that is for A-» h2+h3 (or 
noting that, since h3=3h2, for h-> 4h2), the stress intensity factors and the strain 
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energy release rate tend to zero, which is seen to be the case in Figures 6-11. The 
figures also show that for the values of a/hs considered, Kj, KJJ and G are not 
significantly influenced by the crack length. 
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Figure 6. Mode I stress intensity factors 
vs. crack distance h for different coating 
types (a=h3). 
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From equation 4 and Figures 6 and 9 it may be seen that Kj > 0 for AT>0. 
Also Figures 7 and 10 show that as h increases Kn changes sign at a critical value 
h=hcr, Kn>0 for 0<h<hcr and Kn< 0 for hcr<h<h2+h3. If Kn is nonzero, then the 
stress state around the crack tip is one of mixed mode and, unles the plane of the 
crack is a weak cleavage plane, the crack propagation cannot be coplanar. In this 
case the crack path would deviate at an angle determined by the sign of Kn and 
relative magnitudes of Kj and Kn. This is qualitatively shown in Figure 12. The 
important physical conclusion here is that for a given FGM (or value of/?), since 
the magnitudes of Kj and Kn are relatively independent of the crack length, h=hcr 

plane is a plane of stable crack growth. As physically expected, the figures also 

Kn<0 

h=hc 

Kn>0 

h=0 

Figure 12. Stable crack growth plane h=hc and crack 
propagation direction above and below this plane. 

show that the magnitudes of the strain energy release rate decrease as the metal 
content of the FGM coating increases. 

As in any fracture problem, the path of the propagating crack is dependent 
on the crack dividing force G and the material parameter Gc representing the crack 
growth resistance, Figures 8 and 11 indicate that for given p, G is approximately 
maximum around A=/z2, that is, along TBC/bond coat interface. If one also 
considers the fact that usually an oxide scale (normally A1203) forms along the 
TBC/bond coat interface as medium is exposed to high temperature over an 
elongated period of time resulting in a plane of weak fracture resistance, it is 
reasonable to conclude that the crack propagation in the medium would be confined 
to a plane at or very near to the TBC/bond coat interface. Thus, in the next set of 
the results given in Figures 13-18 it is assumed that the crack lies along the 
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TBC/bond coat interface, h=h2. Again, because of the self equilibrating stress state 
in the medium, it is physically expected that the stress intensity factors Kj, Kn and 
the strain energy release rate G tend to zero as a -> 0 and a -> TQ. This is clearly 

Figure 13. Mode I stress intensity factors 
vs crack length a for different coating 
types (h=h2). 

Figure 16. Mode I stress intensity factors 
vs. crack length a for different coating 
types (h=h2 and temperature dependent 
thermoelastic properties used). 
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Figure 14. Mode II stress intensity factors 
Vs. crack length a for different coating 
types (h=h2). 
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Figure 17. Mode II stress intensity factors 
vs. crack length a for different coating 
types (h=h2 and temperature dependent 
thermoelastic properties used). 
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seen to be the case in Figures 13-18. The results given in Figures 13-15 are 
calculated by using temperature-independent material properties corresponding to 
the reference temperature T0 (in this case, the room temperature). The influence of 
the temperature dependence of the material properties (described in Figures 3-5) on 
Kj, Ku and G is shown in Figures 16-18. Figures 13-18 show that the effect of 
temperature dependence is very significant only in the case of homogenous ceramic 
TBC (p=oo). The reason for this appears to be excessive softening of ceramic at 
high temperature (Fig. 3) and the fact that G is inversely proportional to the overall 
stiffness. For the edge crack considered Figure 19 shows the deformed shape of the 
specimen and typical finite element mesh used in the study. Finite element 
formulation for FGM materials and enriched crack tip elements can be found in 
references [10] and [11]. 

~~l>~riii 
/■\    |_- 

IßO- 
•: y-i—y- 

Figure 19. Deformed finite element mesh and a close up view of the crack tip elements. 

TABLE! Material properties at 22,566 and 1149 °C [9]. 

Material E (GPa) V a(°C"') 

Substrate 
175.8 
150.4 
94.1 

0.2500 
0.2566 
0.3224 

13.91x 10"u 

15.36x10"* 
19.52x10"* 

Bond coat 137.9 
121.4 
93.8 

0.27 
0.27 
0.27 

15.16x10"° 
15.37x10"* 
17.48x10"* 

Ceramic 
27.6 
6.9 
1.84 

0.25 
0.25 
0.25 

10.01x10"° 
11.01x10"* 
12.41x10"* 
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Contact Mechanics of FGM Coatings 

M. A. GULER and F. ERDOGAN 

ABSTRACT 

In this study the contact problem for an FGM coating on a homogeneous 
substrate in the presence of friction is considered. Different punch profiles such as 
triangular, semicircular and cylindrical are used to simulate the load transfer in 
practical applications. The analysis includes the application of Fourier transforms 
to the governing equations and boundary conditions. The general mixed boundary 
value problem is reduced to a singular integral equation of the second kind. The 
asymptotic analysis shows that the stress singularities are of the form r~Q, 
0 < a < 1, where a depends on the coefficient of friction, 77, and the Poisson's ratio 
on the surface and is independent of non-homogeneity parameter, jh. The 
calculated results include contact stresses under the punch, the load required for 
given punch size and stress intensity factors where applicable. The effect of the 
non-homogeneity parameter and coefficient of friction on the contact stresses is 
studied for a variety of coating thicknesses in detail. 

INTRODUCTION 

Many of the present and potential applications of functionally graded materials 
(FGMs) involve contact problems. These are the basic load transfer problems 
between two solids, generally in the presence of friction. In the near future FGMs 
are expected to be used in three groups of practical applications that will require 
studying the problem from a view point of contact mechanics. The first is 
tribological applications of FGM coatings in such load transfer components as 
bearings, gears and cams. In this case the contacting solids are both elastic and one 
or both may have an FGM coating. The second application of the concept would be 
in cylinder linings, brake discs and other automotive components for the purpose of 
improving the wear resistance. In the related contact problem one of    the 

M. A. Guler and F. Erdogan, Department of Mechanical Engineering and Mechanics, Lehigh 
University, Bethlehem, PA 18015. 
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opposing components (e.g., piston rings and brake pads) may have sharp corners. 
The third area of potential application of FGM coatings involving contact mechanics 
is in the field of abradable seal design in stationary gas turbines. The concept of 
abradable seals was developed some years ago to reduce or to eliminate the gas 
leakage between the tips of the blades and the shroud. With such a design the gain 
due to increased efficiency seems to outweigh the power loss due to friction. In this 
case the layered medium consists of the substrate(a superalloy) the 
FGM(substrate/dense YSZ), and porous ceramic(porous YSZ). The contact is 
between porous ceramic and the blade. In these applications, the corresponding 
mechanics problem may be approximated by a quasi-static contact problem for a 
rigid punch of given profile moving over a graded medium in the presence of 
friction. 

FORMULATION OF THE PROBLEM 

The plane strain contact problems under consideration are described by the 
inserts in Figures 1, 3 and 5. Here the stiff contacting element is represented by a 
rigid punch and the coating(e.g. the abradable seal) by a graded metal/lowdensity 
ceramic layer. In the analytical solution, metal substrate is modeled as an elastic half 
plane. It is assumed that the stamp and the coated medium are in relative motion and 
the coefficient of friction, 77, along the contact region is constant(i.e., Q = TJP). The 
shear modulus of the FGM coating is approximated by 

/*e(») = /4>exp(7y), (1) 

and uc = vs = 0.3, where ixs = ß0cxp(-jh) is the shear modulus of the substrate 
and h is the thickness of the coating. The dimensionless constant 7/1 represents the 
material inhomogeneity. 

Shear stress at the surface of the FGM coating is related to the normal stress by 
coefficient of friction as follows 

(?xy(x,0) = V<?yy(x,0)       or       q(x) = T]p(x). (2) 

The related mixed boundary problem may be reduced to the following singular 
integral equation of the second kind 

Ap(x) - - [ pä- dt+ [ k{x, t)dt = f(x), (3) 
TT J-at — X J_a 

A=V—V       /W-.Äj^.O). (4) 

where v{x, 0), — a < x < b, is a known function giving the profile of the punch.In 
the singular integral equation (3) the contact pressure p(x) is unknown and k(x, t) is 
the known Fredholm kernel. But, o and b depend on the shape of the punch profile 
and   are   found   by   applying   equilibrium   and,   if  needed,   the   consistency 
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conditions. The equilibrium of the punch requires that the total pressure on the 
contact area should be equal to the total load applied to the punch. This can be 
expressed as 

' p(t)dt = P, (5) 
/ «/ — c 

where P is the known compressive force per unit depth in z direction. 
We can write the singular integral equation in a normalized form by using 

appropriate change of variables as 

A(j>{r) --[ -^- ds + f K(r, s)ds = F(r). (6) 
nj-is-r        y_i 

The fundamental function of the singular integral equation (6) can be expressed as 

w{r) = (l-r)Q(l+r)ß, (7) 

<*=2^f^+JV' i*--h*fcri+u-       (8) 

- 1 < »(a) < 1,        - 1< fft(ß) < 1, 

where N and M are arbitrary(positive, zero, or negative) integers. 
The singular integral equation has a Cauchy kernel and a Fredholm kernel. It 

does not have a closed form solution. The solution is generally obtained either 
through function-theoretic technique as given by Muskhelishvili [1] or through 
numerical methods [2], [3]. The plane strain problem for h = oo was considered in 
[4]. The corresponding axisymmetric frictionless contact problem was studied in [5] 
and [6]. In this study the unknown function is represented by an infinite series in 
Jacobi polynomials associated with the weight function w(r) given by (7). The 
corresponding singular integral equation may thus be reduced to an infinite system 
of algebraic equations and solved by using the technique described in [7]. 

The solution of the normalized singular integral equation can be expresses as 
00 

<f>(r) = w(r)TcnP^(r), (9) 
o 

where Pn (r)are the Jacobi Polynomials associated with the weight function 
w{r). By substituting (9) into (6) and truncating the series at n = N, and using a 
suitable collocation technique, equation (3) may be reduced to a system of linear 
algebraic equations in the unknown coefficients CO,CI,...,CJV- Contact length, 
then, can be found by using the equilibrium equation (5) and, if needed, the 
consistency condition. 
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Figure 1 Contact stress distribution under a cylindrical punch for various values of contact zone 

sizes and the stiffness ratios /J.S/IM>, in the presence of friction, 77 = 0.3. ao = ßoVu, 
x* = xftRy/Ü), U = P/ißioR). 

RESULTS AND DISCUSSION 

The main results of this study are the contact stresses under the punch, the load 
required for given punch size, and stress intensity factors as functions of the stiffness 
ratios fjts/fJL0 and the basic dimensionless length parameter l/h where I is the contact 
length for the particular punch profile. The closed form results for the homogeneous 
half plane is also presented since it can be used to verify the results in limiting cases. 
As jh-yQ, tis/fAo tends to unity and the results for a homogeneous half plane should 
be recovered. 

In the cylindrical punch problem, described in Figure 1 a rigid half cylinder of 
radius R is pressed to an FGM coating on an elastic substrate. For small values of 
b/R and a/R the surface of the cylindrical punch may be approximated by a 
parabola. Therefore the input function in the singular integral equation (3) becomes, 

f(x) = 
4/40   x 

K + 1R' 
(10) 
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Figure 2 Normalized Applied load versus the normalized contact length for a cylindrical punch for 
various values of contact zone sizes and the stiffness ratios ßs/ßo, in the presence of 
friction, 77 = 0.3. 

The location of the end points of the contact region a and b can not be obtained 
in closed form. The system of equations is nonlinear in (C0,..., CN, a, b), therefore it 
is necessary to adopt an iterative scheme. The problem is solved by assuming a value 
for a, and then solve the resulting linear algebraic equations resulting from the 
integral equation and the consistency condition for C0,..., CJV and b. The constant 
a is then determined from the equilibrium condition (5). 

The influence of the stiffness ratios, ßs/ßo, on the contact stress distribution 
under a cylindrical punch is shown in Figure 1. Three cases (b + a)/h = 0.5, 1.0, 
2.0 have been investigated for the constant coefficient of friction 77 = 0.3. In the 
pressure profiles ßs/ß0 > 1 denotes a compliant surface, such as an abradable seal, 
and Us/fa < 1 denotes a wear-resistant hardened surface, and (is = /xo denotes a 
homogeneous coating. The exponential model (1) was examined for (is/ix0 = 10, 2, 
1, 0.5, 0.1 which correspond to 7/1 = - 2.3026, - 0.6931, 0.0, 0.6931, 2.3026, 
respectively. Note that 7/1 is the measure of the gradient in the FGM coating and 
7/1 = 0 corresponds to a homogeneous medium. 

Since there is a smooth contact, contact stress goes to zero at the ends of the 
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Figure 3 Contact stress distribution under a semicircular punch for various values of the stiffness 

ratios ßs/fio,in the presence of friction, TJ = 0.3. <T0 = noy/Ü, x* = x/(Ry/U), 
U = P/{poR) 

contact region. We have a closed form relation for the pressure profile for the 
homogeneous coating as follows : 

Vo 

p(^ = 4sin7ra ^ 
(ID 

where 

U = 
a 

HoR' 
a = 

Ry/Ü' 
b* = 

Ry/Ü' 
X 

x 

Ry/Ü' 
(12) 

As seen from Figure l,for ß0 < fis, the intensity of the contact stress becomes 
greater. Since there is friction, the pressure profiles are not symmetric and are 
slanted toward the trailing edge(x = 6) of the contact region. Also, as h decreases 
the intensity of the contact stress increases for ß0 < fis and decreases for (i0> fjbs. 
As for the contact length, it becomes smaller for stiffening medium and for 
decreasing h. 
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Figure 4 Normalized Applied load vs. the contact length 6 for a semicircular punch for various 
values of the stiffness ratios ^S/MO, in the presence of friction, 77 = 0.3. 

In Figure 2, the normalized load is given as a function of normalized contact 
length (b + a)/R, for (b + a)/h = 0.5,1.0,2.0 and for various values of the 
stiffness ratios, /is//v In the case of fJLs/ßo > 1 , that is a compliant surface on a 
stiffer substrate, the normalized load increases as the contact length increases. As 
the stiffness ratio becomes smaller, ßs/ßo < 1, load required for the same amount of 
contact length decreases. 

The closed form result for the homogeneous substrate is given by 

27ra(l - a) fb + a\2 

p0R K + l m (13) 

Figure 3 gives the contact pressure distribution under a semicircular punch for 
various values of the stiffness ratios, /xs//v Note that for the homogenous coating 
(i.e. fj,s = fi0) there is a closed form relation for the contact stresses in the form 

P(x)    =       
fi0y/U       y/(K+l)2ira(l + a) 

4sin7ra /       x\/6 —x\Q 

T)(a+b){—)■ (14) 
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Figure 5 Contact stress distribution under a triangular punch for various values of the contact zone 

sizes and the stiffness ratios fJ,s/fM>, in the presence of friction, 77 = 0.3, cr0 = ßom, 
x* = iMj-mx/P. 

Figure 4 gives the normalized load as a function of the normalized contact length 
b/R, for b/h = 0.2, 0.5, 1.0 and for various values of the stiffness ratios, fis/fJio. 
Also for the same applied load the contact length increases with surface stiffness. 
The closed form relation for the homogeneous half plane is parabolic and is given by 

P   _ 2na(l - a) / b \'< 
pi0R~      K + l     \R/ 

(16) 

The profile for the triangular punch is shown in Figure 5. For this case, the input 
function f(x) in equation (3) for this case is 

/(x) = __m, (17) 

where m is the slope of the punch profile. The pressure is again zero at x = b due to 
smooth contact and is unbounded at x = 0 due to sharp edge. Note that for 
ßs/Vo = 1 the medium is homogeneous and contact stress p(x) and the resultant 
force P are known in closed form and are given by 
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Figure 6 Applied load versus the contact length b for a triangular punch for various values of the 
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p(x) _ 4sin7TQ; fb — x\a 

u«m      K +1 v   x   / 
47TO! 

/j0ra      /c +1 
6. (18) 

Figure 5 gives the contact pressure distribution and Figure 6 gives the 
normalized load as a function of the contact length b under a triangular punch for 
various values of the stiffness ratios, fis/fi0. 

Mode I Stress intensity factors(SIF) for the semicircular and triangular punch at 
the sharp end(x = 0) may be defined as 

fci(0) = lim xap(x). (19) 

Stress intensity factors for both profiles are normalized with respect to the SIF in 
corresponding homogeneous case. For the semicircular and triangular stamps the 
SIFs for the homogeneous cases (ßs/^o = 1) respectively are 

*i\(0) = 
2sin7ra   P 
7r(l+a)&1_a' *J*(0) = 

sin7ro;   P 
7TQ:    fe1_a' 

(20) 
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Table 1 gives an idea about the influence of the variation of  /JLs/fi0 on the 
normalized stress intensity factors for various values of coating thicknesses. 

TABLE 1 STRESS INTENSITY FACTORS 
Semicircular 

M0)/*Jh( 
3unch 
0) 

Triangular punch 

Mo)/*Sfc(o) 
ßs/ßO 

b/h 
10.0 2.0 1.0 0.5 0.1 10.0 2.0 1.0 0.5 0.1 

0.2 0.868 0.959 1.000 1.042 1.149 0.845 0.947 1.000 1.062 1.254 
0.5 0.634 0.899 1.000 1.112 1.435 0.690 0.884 1.000 1.145 1.663 
1.0 0.464 0.813 1.000 1.212 1.854 0.525 0.809 1.000 1.250 2.184 
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Axisymmetric Crack Problem in a Functionally 
Graded Semi-Infinite Medium 

A. SAHIN and F. ERDOGAN 

ABSTRACT 

In this study the axisymmetric crack problem in a functionally graded semi- 
infinite medium is considered. It is assumed that the penny-shaped crack is located 
parallel to the free surface and the mechanical properties of die medium vary in 
depth direction only. By using a superposition technique the problem is reduced to 
a perturbation problem in which crack surface tractions are the only external forces. 
The corresponding mixed boundary value problem is then reduced to an integral 
equation with a generalized Cauchy kernel and solved numerically to obtain stress 
intensity factors and crack opening displacements. Results obtained for different 
nonhomogeneity and length parameters are presented and discussed. The problem 
has applications to the investigation of the general question of spallation fracture. 

INTRODUCTION 

In recent years the requirements for high temperature applications of structural 
materials have become increasingly more stringent. Since very often the 
conventional materials were not adequate for modern technologies, various forms 
of composites and bonded materials have been used in such technological 
applications as power generation, transportation, aerospace and microelectronics. In 
high temperature applications, metals and metal alloys appear to be very 
susceptible to oxidation, creep and generally to loss of structural integrity [1]. 
Similarly, low strength and low toughness have always been the disadvantages of 
ceramics. Thus, as an alternative to conventional homogeneous thermal barrier 
ceramic coatings, the concept of functionally graded materials (FGM) was 
proposed. FGMs are essentially two-phase particulate composites synthesized in a 
such way that the volume fractions of the constituents vary continuously in the 
thickness direction to give a predetermined composition profile. 

A. Sahin and F. Erdogan, Division of Applied Mathematics, Lehigh University, Bethlehem, PA 
18015 
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Figure 1 Crack geometry and notations 

In this study it is assumed that the functionally graded medium contains an 
initial dominant flaw which can be approximated by a penny-shaped crack parallel 
to the surface (Figure 1). With the applications to fatigue and fracture in mind, the 
primary objective of the study has been the calculation of the stress intensity factors 
and the crack opening displacements. The previous studies have shown that in 
linear elastic crack problems for FGMs the fracture mechanics parameters are not 
very sensitive to the Poisson's ratio, v, [2],[3]. Thus, in this study, too, it is assumed 
that v is constant throughout the medium. It is also assumed that the Young's 
modulus may be represented by an exponential function of the depth coordinate z 
(Figure 1). Under these assumptions the problem becomes analytically tractable and 
may be reduced to a system of singular integral equations by using the Hankel 
transforms [4]. 

FORMULATION OF THE PROBLEM 

Consider the axisymmetric crack problem in a nonhomogeneous semi-infinite 
medium described in Figure 1 with the crack radius o and the distance h. Let the 
Lame's constants be approximated by 

(j,(z) = n0exp(az), \(z) = Aoexp(az). (1) 

For the perturbation problem under consideration the only nonvanishing external 
loads are assumed to be 

<rizz(r, 0+) = a2zz(r, 0 ) = pi(r), 0 < r < a, (2a) 

crirz(r, 0+) = CT2rz(r, 0 ) = p2(r), 0 < r < a, (2b) 
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Using the kinematic relation and the Hooke's law in the absence of body forces, the 
equilibrium equations can be expressed as follows : 

/<92u     ldu     u      d2w\     .        .   (du     dw\ 
\dr2     r dr     r2     drdz) \dz      dr) 

,      ,. /' d2u      d2w \ ,„ . + {K-l\W-e^)=0' (3a) 

.      ,./92u      ldu     d2w\     .        .   (du     u\ 
<« + V\jM. + ~r & + W) ~ (3 " KK * + ?J 

x   c?iu     „        ^ ( d2u      d2w\     (n—Dfdu     dw\ 
+ (« + i)o_-(«-i)(_-;g?)-L_^___)=ft   (3b) 

where K = 3 — 4z/, A//z = 2i//(l — 2z/), v being the Poisson's ratio. The function 
u(r, z) and w(r,z) are the rand z components of the displacement vector. 
Equation (3) may be solved by using Hankel transforms with the following 
boundary and continuity conditions: 

o\zzir, h) = 0, virz(r, h) = 0, 0 < r < oo, (4a) 

<rizz(r, 0) = a2zz(r, 0),    a\TZ{r, 0) = a2rz(r, 0),     0 < r < oo, (4b) 

u>i(r, 0+) - w2(r, 0~) = 0, a < r < oo, (4c) 

uiO% 0+) ~ «2(»", 0") = 0, o < r < oo, (4d) 

where subscripts 1 and 2 refer to the domains 0 < z < h and z < 0, respectively. 
After some lengthy analysis the mixed boundary conditions (2a,b) and (4c,d) may 
be reduced to the following system of integral equations 

- /   ^^ ds + -     VW«, r)^(s) ds = VV ^Pi(r),        0 < r < a   (5a) 

Ua^±ds + l M>,(a, r)^00 da = - ^W),    0 < r < a   (5b) 
K J -aS — T TIJQ    .=1 Z/i0 

/  &(s)ds = 0, (5c) 
J—a 
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[as<f)2(s)ds = 0, (5d) 
J—a 

where 

fair) = —{w(r,0+) - w(r,0-)), 0 < r < oo, (6a) 

02(r) = —— (ru(r,0+) - ru{r, 0~)), 0 < r < oo, (6b) 
r or 

<£i and 02 are unknown functions and the Fredholm kernels fcy(s, r), (i, j = 1,2), 
are square integrable in the domain 0 < (r, s) < a. Although in practice these 
kernels are generally bounded and continuous in the interval (0, a), in 
axisymmetric problems kij(s,r) invariably contains a logarithmic singularity at 
r = s [5]. Since there is no "closed form" solution for (5), an effective numerical 
solution may be developed by using a quadrature formula of the Gaussian type to 
evaluate the integral with Fredholm kernels for appropriately selected values of r;, 
(i = 1,.., n), and reducing the problem to a system of linear algebraic equations in 
the unknowns <j>(sj), (j = 1, ..,n). It can also be shown that the solution of the 
integral equations (5) may be expressed in terms of the following infinite series : 

1 °° / <! \ 

*l(s) = T=7^I?',T"^' (7a) 

1 Ü" . 

*w = -7—^s5>r-ü- (7b) 

where the orthogonal functions Tn are Chebyshev polynomials of the first kind and 
To = 1. An and Bn are the new unknowns which may be determined from the 
linear algebraic system obtained by substituting (7) into (5) and by using a method 
of reduction. 

RESULTS AND DISCUSSION 

The main results of this study are the stress intensity factors calculated for 
various loading conditions as functions of the dimensionless nonhomogeneity 
constant aa defined by (1) and the basic dimensionless length parameter h/a. For a 
homogeneous infinite medium modes I and II crack problems are uncoupled and 
the stress intensity factors are given by 
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Figure 3  Normalized SIF for various h/a, 
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Figure 4   Normalized SIF for various h/a, 
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Figure 5  Normalized SIF for various h/a, 
0-2Z(r,O) = 0, crrz(r,0) = - q0 

h =  _      2      /«^ 
fc2 

a  r2p2(r) 2    r r^j 

TT\/a3 Jo \fa 
■dr. (8) 

In Figures 2-17, the stress intensity factors and the crack opening displacements 
are shown for two different loading conditions, namely pi(r) = — po, P2(r) = 0 
and p2(r) = — qo{r/a), pi(r) = 0. For the problem under consideration the 
normalized stress intensity factors and the crack opening displacements are 
calculated for a constant Poisson's ratio (u = 0.3) by varying h/a and aa. Note 
that the problem is formulated and can be solved for arbitrary crack surface 
tractions. Figure 2-9 show the normalized mode I and mode II stress intensity 
factors k\ and k^ for two primary loading conditions with the dimensionless 
constants aa and h/a as the variables. For large h/a values, the calculated stress 
intensity factors agree with the results given in [3]. 
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When there was only normal loading (crzz(r, 0) = — po, crrz(r, 0) = 0), it was 
observed that for large values of h/a, normalized stress intensity factor k\ increases 
slowly as the nonhomogeneity parameter aa increases. However, for small values 
of h/a, (such as h/a = 0.10), the normalized stress intensity factor hi first 
decreases and then slowly increases with increasing aa (Figure 2). Under the same 
loading &2 increases with increasing aa for all values of h/a. On the other hand for 
shear loading (azz(r, 0) = 0, arz(r, 0) = — go)» stress intensity factor k\ increases 
for all values of h/a with increasing aa, however, the values of fci are small. 
Similarly, &2 increases for all values of h/a with increasing aa, but the values of 
&2 are small compared to ki under the normal loading. 

From Figures 10 and 11 it may also be observed that values of k\ under normal 
loading and &2 under shear loading were almost symmetric with respect to aa 
(— 5 < aa < 5) for large values of h/a. Since the stress intensity factors do not 
depend on the magnitude of the shear modulus //0 for a crack in an infinite medium, 
this result is expected. 
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Figure 10 Normalized SIF for various h/a, 
Ozz{r,Q) = -po, CTrz(r,0) = 0 

Figure 11 Normalized SIF for various h/a, 
<?zz{r, 0) = 0, aTZ(r, 0) = - q0 
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Figure 12 Normalized COD for aa = 0, 
o-«(r,0) = 0, arz(r,0) = - qQ 
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Figure 13 Normalized COD for aa = 2, 
<?zz(r,0) = 0, ar2(r,0) = -q0 

It was also observed that stress intensity factors k\ and &2 under respectively 
normal and shear loading tend to certain limiting values as h/a increases. On the 
other hand as expected, same stress intensity factors tend to infinity when h/a goes 
to zero. For large values of h/a the results agree with [3]. Also, for fixed values of 
aa the stress intensity factors fciand k2 under shear and normal loading, 
respectively, tend to certain limiting values which are, however, negligibly small. 

Figures 12-17, show some sample results for the normalized crack opening 
displacements U(r) and W(r), which are respectively the r and z components of 
the relative crack opening defined by (Figure 1) 

U(r) = 
u(r, 0+) - u(r, 0~) 

aqoJK + 1)       : 

2/x 

W(r) = ^M+)-Mr,0-) 

2fx 

98 



0.0      0.2      0.4      0.6 
r/a 

6 ——^^             A./o= =0.25 

i 

0.50 
1.0 

- 

5 oo ^ 
V_J *— 

2 - 
W(r) ^^ ^ 

1 

i     ,     i 

^Ov 
n ,     i     ,     i     , 

0.8      1.0 

Figure 14 Normalized COD for aa = 0, 
aZ2(r,0) = -po, <Trz(r,0) = 0 

0.0      0.2      0.4      0.6      0.8      1.0 
r/a 

Figure 15 Normalized COD for aa = 0.5, 
azz(r, 0) = - po, Orz{r, 0) = 0 

W(r) 

0.0      0.2      0.4      0.6      0.8      1.0 
r/a 

Figure 16 Normalized COD for aa = 1, 
0zz{r,O) = -po, <7rz{r,0) = 0 

W(r) 

Figure 17 Normalized COD for aa = 2, 
<r»(r,0) = -po, <7rz(r,0) = 0 

The figures show that the influence of the nonhomogeneity constant aa on the 
crack opening displacements is not very significant. On the other hand U(r) and 
W(r) are seen to be rather heavily dependent on h/a (particularly for small values 
of h/a). Again, for large values of h/a the results agree with that given in [3]. The 
problem was solved under the assumption that the Poisson's ratio u is constant. 
Theoretically this is not possible. The assumption can only be justified if the 
fracture mechanics parameters of interest, in this case the stress intensity factors, 
prove to be relatively insensitive to variations in the Poisson's ratio. In the problem 
considered, it was observed that stress intensity factors are relatively insensitive to 
variations in the Poisson's ratio for small values of nonhomogeneity parameter aa 
and for all values of h/a. But for large aa and small h/a the effect of Poisson's 
ratio may not be negligible. Some results are presented in Tables 1-4 to give an idea 
about the influence of the variation in v on the stress intensity factors. It may be 
seen that, generally, the influence of v on the stress intensity factors is not very 
significant. 
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TABLE 1     THE VARIATION OF SIF WITH v FOR h/a = 2.0 AND 

<r„(r,0)= -ft>, crTZ(r,0)=0. 

ota = = 0.1 aa = = 1.0 aa = = 2.0 aa = = 4.0 

V 
h 

Poy/a 

k2 

Poy/a 

h 
Po\/a 

k2 

po\A 
*i 

Po\/ä 
k2 

Poy/a 
*i *2 

Poy/a 
0.00 .6676 .0037 .7041 .1021 .7962 .2162 1.0598 .4636 
0.10 .6677 .0037 .7094 .1024 .8101 .2170 1.0870 .4657 
0.20 .6678 .0037 .7157 .1028 .8266 .2179 1.1186 .4682 
0.30 .6679 .0037 .7236 .1033 .8465 .2189 1.1562 .4711 
0.40 .6681 .0037 .7337 .1038 .8710 .2201 1.2021 .4747 
0.45 

1 , ._ .6681 .0037 .7398 .1041 .8857 .2208 1.2292 .4768 

TABLE 2    THE VARIATION OF SIF WITH v FOR h/a = 2.0 AND 
<r»(r,0) = 0, o-„(r,0)= - q0. 

aa = 0.1 aa = 0.5 aa = 1.0 aa = 1.5 

V 
qoy/a 

k2 

qoy/a qoi/a 
k2 

qoy/a 
*1 

cjoi/ä Qoy/a 
*i 

qoy/a 
*2 

qoy/a 
0.00 - .0025 .4253 - .0018 .4285 - .0008 .4370 - .0001 .4638 
0.10 - .0025 .4254 - .0017 .4288 - .0007 .4380 - .0001 .4659 
0.20 - .0025 .4254 - .0016 .4292 - .0006 .4391 .0000 .4683 
0.30 - .0025 .4254 - .0015 .4296 - .0005 .4406 .0000 .4712 
0.40 - .0025 .4254 - .0013 .4303 - .0004 .4423 .0000 .4747 
0.45 - .0025 .4254 - .0012 .4307 - .0003 .4434 .0000 .4768 

TABLE 3    THE VARIATION OF SIF WITH v FOR h/a 
0-»(r,O)= -po, arz(r,0) = 0. 

■■ 0.25 AND 

aa = 0.1 aa = 1.0 aa = 2.0 aa = 4.0 

V 
*i 

Pay/a 

k2 

Poy/a 

fci 

Poy/a 

k2 

Pay/a 
*i 

Poy/ä 

k2 

Poy/a 

fci 

Poy/ä 

k2 

POyfä 
0.00 1.9598 - .7568 1.9490 - .6297 1.9564 - .4780 2.0285 - .1435 
0.10 1.9598 - .7568 1.9502 - .6289 1.9606 - .4753 2.0407 - .1362 
0.20 1.9598 - .7568 1.9517 - .6280 1.9657 - .4720 2.0552 - .1276 
0.30 1.9599 - .7568 1.9536 - .6267 1.9720 - .4679 2.0729 - .1173 
0.40 1.9599 - .7567 1.9560 - .6251 1.9802 - .4627 2.0952 - .1045 
0.45 1.9599 - .7567 1.9576 - .6241 1.9852 - .4596 2.1088 - .0969 

TABLE 4    THE VARIATION OF SIF WITH v FOR h/a = 0.25 AND 
crzz(r,0) = 0, (Trz(r,0)= - q0. 

aa = 0.1 aa = 1.0 aa = 2.0 aa = 4.0 

V 
*1 

9o \A 
k2 

qoy/ä 

ki 
qoy/a 

k2 

qoy/a qoy/a 
k2 

qos/a. qoy/a 
k2 

qoy/a 
0.00 - .0925 .5412 - .0915 .5425 - .0887 .5463 - .0799 .5591 
0.10 - .0925 .5412 - .0914 .5426 - .0883 .5467 - .0790 .5601 
0.20 - .0925 .5412 - .0912 .5428 - .0878 .5472 - .0780 .5612 
0.30 - .0925 .5412 - .0910 .5430 - .0872 .5478 - .0768 .5626 
0.40 - .0925 .5412 - .0907 .5432 - .0865 .5486 - .0754 .5642 
0.45 - .0925 .5412 - .0906 .5434 - .0860 .5490 - .0745 .5652 
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Wave Propagation in a Functionally 
Graded Elastic Medium 

T.-C. CHIU and F. ERDOGAN 

ABSTRACT 

In this study the one-dimensional wave propagation in a functionally graded 
elastic slab is considered. It is assumed that the stiffness and density of the medium 
vary continuously in thickness direction and it is initially at rest and stress-free. The 
slab is subjected to a pressure pulse on one surface and vanishing stress or 
displacement condition on the other. The solution is obtained in wave summation 
form. Propagation of a rectangular pressure pulse in a graded medium that consists 
of either nickel/zirconia or aluminum /silicon carbide is studied as examples. It is 
shown that there is considerable wave distortion in time and the distortion is much 
more pronounced in slabs with fixed/free boundary conditions. A simple 
approximate expression giving the peak stress is developed. Also it is demonstrated 
that the energy balance principle may be used as a convergence criterion in the 
calculation of stresses. 

INTRODUCTION 

In layered materials involving functionally graded coatings and interlayers, 
generally the dominant modes of failure appear to be cracking and spallation. Aside 
from the appropriate fracture mechanics, dealing with these failure problems 
requires a detailed stress analysis for identifying the likely sites of failure initiation 
and for determining the peak values of stresses. In some cases the loading of these 
inhomogeneous components may be dynamic in nature. Thus, an important area of 
interest in considering the applications of functionally graded materials(FGMs) 
would be to study the dynamic response of the component to, for example, impact 
or blast loading. In elastodynamics of materials with continuously varying 
properties, usually the pulse shape is distorted in time, the wave propagation speed 
is not constant, and there are no sharp interfaces that would cause wave reflections. 

T.-C. Chiu and F. Erdogan, Department of Mechanical Engineering and Mechanics, Lehigh 
University, Bethlehem, PA 18015 
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Figure 1  Boundary conditions and loading for an FGM slab; (a) free/free, 
(b) fixed/free boundaries, axx(l, t) = a0f(t) stress pulse. 

Consequently, even in the simple case of one-dimensional wave propagation the 
locations and magnitudes of peak stresses cannot be determined by inspection. 

Because of its relevance in geophysics and soil mechanics, in the past there has 
been quite considerable interest in the elastodynamics of inhomogeneous media 
(e.g., [l]-[5]). In the present paper we consider the one-dimensional problem in 
elastodynamics for an FGM plate in which material properties vary only in thickness 
direction. The boundary conditions are assumed to be either free/free or fixed/free. 
Laplace transform technique is used to solve the problem. Even-though the 
technique could accommodate arbitrary inputs, the problem is solved under zero 
initial conditions with a rectangular pressure pulse as the external load. 

ON THE FORMULATION OF THE PROBLEM 

The one-dimensional elastodynamic problem under consideration is described in 
Figure 1. It is assumed that the slab is isotropic and inhomogeneous with the 
following properties: 

E'(x) = E'0(aj + ir, x 
p(x) = p0(a- + 1)», (1) 

where p is the mass density, I is the thickness, a, m, and n are arbitrary real 
constants with a > —1,E'0 and p0 are the elastic constant and density at x — 0, and 
the elastic constant E' is determined under the assumption that am — azz and the slab 
is fully constrained at infinity. It can, thus, be shown that 

E' = 
E{\ - v) 

(1 + i/)(l - 2v)' 
(2) 

E(x) and v{x) being the Young's modulus and the Poisson's ratio of the 
inhomogeneous material. It is assumed that initially the slab is at rest. By introducing 
the normalized quantities 
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X = x/l, T = cot/l, U = u/l, Co = y/E'Jfo (3) 

and  using  Laplace  transform,   the   solution  of the  wave  equation  for  the 
inhomogeneous medium may be obtained as follows [6]: 

u(x,t) 1       /«7+ioo 

= U(X,T)=^- U(X,p)^dp, 
Z7T1 J-y—ioo 

(4a) 

(4b) 

where 

{aX+\f? C\la 
P 

ßa 
(aX+lf 

U(X,p)={ +c^(\UaX+iy) m^n + 2,        (5) 

^C3(aX+l)s* + C4(aX+l)s\        m = n + 2, 

lß(z) and Kß(z) are the modified Bessel functions of the first and second kind, 
respectively, a and ß are functions of m and n, and s3 and s4 are known functions of 
p. The pairs of unknown functions (Ci(p), C2(p)) or (C3(p), C4(p)) are to be 
determined from the boundary conditions at x = 0 and x = I. At x = 0 the condition 
is 

or 

<rxx(0,t) = 0, t > 0, ("free" boundary) 

u(0, t) = 0, t > 0, ("fixed" boundary). 

At x = Z the slab is subjected to a stress pulse given by 

<r„(l,t) = <r0f(T),T = Cot/l,t>0 

(6a) 

(6b) 

(7) 

where the constant a0 is the magnitude of the pulse, the function / describes its time 
profile, and without any loss in generality, it is assumed that |/| < 1. 

From a viewpoint of failure mechanics there is a greater interest in the evaluation 
of stresses than the displacements. The inversion of transforms such as (4) may be 
accomplished by a technique of either residue summation or wave summation. The 
residue summation is best suited to study the long time response, whereas the wave 
summation technique is more appropriate for short time analysis and is more 
descriptive in displaying the wave character of the response. In this study the main 
interest is in the transient response of the medium and, hence, only the wave solution 
is developed. Referring to the Abel-Tauber theorems regarding the asymptotic 
results, it is observed that for a given transform pair g(T) and g(p) the asymptotic 
behavior of g(p) for large values of p corresponds to the behavior of ^(T) for small 
values of T. Thus, through the asymptotic analysis (4b) may be expressed in a form 
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TABLE I - PROPERTIES OF MATERIALS USED IN THE EXAMPLES 

E (GPa) V p (kg/m3) 
Zr02 151 0.33 5331 

Ni 207 0.31 8900 
SiC 210 0.17 3100 
Al 71 0.33 2710 

TABLE H - MATERIAL CONSTANTS OF FGMS USED IN THE EXAMPLES 
AND DEFINED BY EQUATIONS (1) AND (2) 

Ni/Zr02 Zr02/Ni SiC/Al Al/SiC 

K (GPa) 286.922 223.728 225.719 105.197 
Po (kg/m3) 8900 5331 3100 2710 

a 0.14096 -0.12354 -0.53395 1.14568 
m -1.8866 -1.8866 1.0000 1.0000 
n -3.8866 -3.8866 0.17611 0.17611 

suitable for evaluating the small time response [6]. In the asymptotic expression if 
only the first terms in the expansions are kept, the following approximations for the 
stress component axx are obtained that are valid for small values of T only: 

, . , .   Eli 
axx(X,T)      faX+l\  4 

(To o+l 

-   00 

]T/(:r-6*)H(:r-6*) 
k=0 

(8a) 

-/(r-&)H(r-€a) 

for the free/free boundary conditions (Figure la), and 

<rxx(X,T)      faX+l\ 4 

<r0 

+ f(T-r,2k)H(T-r,2k) 

(8b) 

for the fixed/free boundary conditions (Figure lb), where H(t) is the Heaviside 
function and £ik and -qik, i= 1, 2, are functions of X [6]. 

RESULTS AND DISCUSSION 

As a first example we consider an FGM slab that consists of nickel and zirconia. 
We assume that the thickness of the plate is I = 5 mm, on one surface the medium is 
pure nickel, on the other surface pure zirconia, and the material properties E'(x) and 
p(x) vary smoothly in thickness direction. A pressure pulse defined by 
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for a Ni/Zr02 FGM slab under free/free 
boundary conditions, the arrows indicate 
the direction of pulse propagation. 
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Figure 3 The variation of GJO0 with t 
at x = 1/50 in a Ni/Zr02 FGM slab under 
free/free boundary conditions. 

<rxx(l,t)= -(To H(t)-H(t-t0) (9) 

is applied to the surface x = I and the boundary x = 0 is either "free" or "fixed" 
(Figure 1). The pulse duration is assumed to be t0 = 0.2 /zsec. The properties of the 
constituent materials used in the examples are given in Table I. The material 
parameters defined by (1) and (2) for the FGMs used in the examples are given in 
Table II. Six-term asymptotic approximations are used in the examples for 
calculating the stresses. The results for the case of Ni/Zr02 slab with free/free 
boundaries are shown in Figures 2-4. Figure 2 shows the stress as a function of 
location x for three different values of time. Figures 3 and 4 show the time 
dependence of the stress at x = 1/50 and x = 1/2, respectively. Note that at x = 0 
the stress is zero and x = 1/50 was selected to have some idea about the spallation 
stress near the boundary. Figures 5 and 6 show the time-dependence of the stress at 
the fixed boundary (Figure lb) x = 0 for Ni/Zr02 and Zr02/Ni FGM slab, 
respectively. By examining the results given in Figures 2-4 where the boundaries of 
the slab is stress-free and the pulse is applied on the less stiff side, it may be 
observed that the duration of the pulse remains constant (at At = t0 = 0.2 /isec), the 
pulse shape is distorted as time increases, at a given location the jump ACT in stress 
corresponding to leading and trailing edges of the pulse remains constant but its 
value is dependent on the location x, at x = I ACT = a0, for 0 < x < I ACT > cr0, and 
as x decreases, ACT increases slightly but monotonically. After the pulse passes 
through the stress does not drop to zero and this overshoot seems to increase with 
time. These deviations from the homogeneous materials are much more pronounced 
in the case of fixed/free boundaries than in free/free boundaries. This can be clearly 
seen from Figures 5 and 6. Figures 5 and 6 also show the standard doubling of the 
amplitude of the pulse reflected from the fixed boundary at x = 0. However, if the 
fixed boundary x = 0 is the stiffer side of FGM, then the jump 2Acr in the reflected 
pulse is greater than 2cr0 (Figure 5) and if x = 0 is the less stiff side, then 2 ACT < 2<r0 
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at x = 0 in a Zr02/Ni FGM slab under 

fixed/free boundary conditions. 
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Figure 5 The variation of o^lc^ with t 

at x = 0 in a Ni/Zr02 FGM slab under 

fixed/free boundary conditions. 

|\ 

/ 

0 2 4 6 

t ((J.sec) 

Figure 7 The variation of 0^/CTQ with t 

at* = 0 in a SiC/Al FGM slab under 
fixed/free boundary conditions. 

(Figure 6). One may also observe that in the case of fixed/free boundaries, the 
magnitude of the overshoot is no longer small compared to <r0. Since at a given 
location ACT is constant, this could be an additional source of stress amplification. 

Most of the observations made in this section may be verified by examining the 
one term approximations (8). The fact that the pulse duration At = t0 is constant 
may be seen from (9) and one term asymptotic expressions (8). The wave 
summation aspects of the solutions representing the interactions of waves with 
boundaries are similar to those in homogeneous media, except that due to material 
inhomogeneity the wave speeds are variable. The asymptotic results show that the 
magnitude of the jump discontinuity in stress may be expressed as 

Ao; 
= ipo(x) 

g{x/l) +1 
a+1 

m+n 
4 E'(x)p(x) 

E'{l)p{l) J 
(10) 

Thus, from (10) it is seen that ip0(l) = 1, V'o(z) > 1 for the case of pulse acting on 
the pure zirconia side and i>0{x) < 1 for the case of pulse acting on the pure nickel 
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Figure 9 The energy balance in a Ni/Zr02 

FGM slab under fixed/free boundary conditions 
subjected to the pulse defined by (9). 

side. Needless to say, the actual values of (o^)^ will be the sum of ACT and the 
overshoot. The results described by the figures indicate that the overshoot is 
dependent on the boundary conditions and the material composition, and there is no 
simple way of estimating its magnitude. In many cases, however, the overshoot may 
be negligible and at a given location x the maximum stress may be approximated by 

(<r**(x,i))max = -K'i/'o(x)<ro (ID 

where K = 1 for free/free and K = 2 for fixed/free boundaries. If we further assume 
that the density and the Poisson's ratio are constant, then (10) becomes 
^b(x) = [E(x)/E(l)]1/i. This is the result found by Steele [3] from the leading term 
of an asymptotic solution based on geometric optics. 

As a second example we consider the pulse propagation in an FGM slab that 
consists of aluminum and silicon carbide. Referring to (1) and Table II, it is seen that 
m # n + 2 and consequently the solution is somewhat more complicated. Again the 
thickness of the slab is I — 5 mm pulse duration is t0 = 0.2 fiscc, and the pulse is 
applied at x = I. For SiC/Al and Al/SiC FGMs, the time-dependent stress at x = 0 
is given by Figures 7 and 8, respectively. The results of the two examples considered 
show that if the pulse is applied on the stiffer side of the graded medium, the 
amplitude ratio Aa/a0 decreases in thickness direction. Since in FGM coatings the 
surface subjected to the impact loading is usually stiffer, this general result indicate 
one of the advantages of graded coatings. 

In the absence of an exact solution, one may use the energy balance to examine 
the accuracy of the asymptotic solutions. Initially the medium is stress-free and is at 
rest, meaning that for t < 0 the elastic energy Uv and the kinetic energy UT are zero. 
Fori > 0, since the medium is nondissipative, the energy balance principle requires 
that the sum of elastic and kinetic energies be equal to the work W of external 
loads, that is 

W(t) = Uv(t) + UT(t), t > 0. (12) 
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In the FGM plate shown in Figure 1, for a unit surface area the external work, the 
total strain energy, and the total kinetic energy may be written as 

W(t)= I <rxx(l,s)du(l,s), 
Jo 

Mt)=lW)dXt   m)-f.'f\k**tfdx>     (13) 

respectively. For the Ni/Zr02 FGM plate with fixed/free boundary conditions 
(Figure lb), the energy balance is shown in Figure 9. Here the terminology "total 
energy" and "input work" are used for Uv{t) + UT(t) and W(t), respectively. The 
figure show UV/{UV + UT) and W/(UV + UT) as functions of time. Theoretically one 
should have W(t)/[Uv(t) + UT(t)] = 1. Figure 9 shows that the agreement between 
theoretical and calculated total energies is nearly perfect up to 11 microseconds. For 
t > 11 /isec there are signs of greater discrepancy between the two results, 
indicating that for longer values of time one needs to retain more than six terms in 
the asymptotic series giving the stress and the displacement. 
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Abstract 

The mixed-mode crack problem in plane elasticity for a graded and oriented 
material is considered. The material property grading is intentional, whereas the 
property orientation or orthotropy is usually the consequence of material 
processing. It is assumed that the crack is located in a plane perpendicular to the 
direction of property grading and the principal axes of orthotropy are parallel and 
perpendicular to the crack. The corresponding mixed boundary value problem is 
reduced to a system of integral equations which is solved for various loading 
conditions and material parameters. The results presented consist of the strain 
energy release rate, the stress intensity factors and the crack opening 
displacements. It is found that generally the stress intensity factors increase with 
increasing material inhomogeneity parameter and shear parameter and with 
decreasing stiffness ratio. 

1. Introduction 

Within the past decade there has been a great deal of interest in the concept of 
material property grading as a tool for new material design in certain advanced 
technology applications, primarily in high temperature components, 
microelectronics and machine tools. Most of the work in this area is concerned 
with metal/ceramic paniculate composites with continuously varying volume 
fractions. The main objective has been to combine such desirable properties as 
strength, toughness and temperature, wear and corrosion resistance in a single 
material system. Two important potential applications of the concept appear to be 
coatings and interfacial zones. It has been shown that in these components grading 
the material composition reduces the magnitude of processing related and 
thermally or mechanically induced stresses ( Choules and Kokini, 1993, Lee and 

* This study was supported by ARO under the Grant DAAH04-95-1-0232 
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Erdogan, 1995) and significantly increases the bonding strength (Kurihara et al., 
1990). A comprehensive review and discussion of the issues relating to the 
processing, design and mechanics of the graded materials may be found in 
Yamanouchi et al. (1990), Holt et al. (1993) and Dschner and Cherradi (1995). 

Generally, in coatings the subcritical crack growth and spallation-related 
failures involve two types of cracking, namely a surface crack propagating 
perpendicular to the boundary and an interface crack. This is partly due to the fact 
that because of the techniques used in processing, the graded medium is seldom 
isotropic and the two crack planes mentioned correspond to the principal planes of 
material orthotropy and consequently, to relatively weak fracture planes. For 
example, the materials processed by using a plasma spray technique have generally 
a lamellar structure. Flattened splats and relatively weak splat boundaries provide 
an oriented material with higher stiffness and weak cleavage planes parallel to the 
boundary (Sampath et al., 1995). On the other hand, graded materials processed by 
an electron beam physical vapor deposition technique would invariably have a 
columnar structure, resulting in a higher stiffness in thickness direction and weak 
fracture planes perpendicular to the boundary (Kaysser and Dschner, 1995). 
Clearly, in studying the mechanics of these materials assuming the medium to be 
isotropic would not be very realistic and as a first approximation one could assume 
that the graded material is orthotropic with principal directions parallel and 
perpendicular to the boundary. 

Since the material property grading is usually in thickness direction, and the 
residual and thermal stresses are generally parallel to the boundary, in the first 
crack problem of interest, namely in surface crack problem the plane of the crack is 
a plane of symmetry in material properties and loading. Consequently, the problem 
is a mode I crack problem for an orthotropic inhomogeneous medium In the 
second problem of interest relating to spallation fracture, the crack is located in a 
plane perpendicular to the direction of material property variation. Therefore, the 
problem is inherently a mixed mode crack problem In this study we consider the 
basic mixed mode problem in plane elasticity for an orthotropic inhomogeneous 
medium described in Fig. 1. The main interest in this study is in the influence of 
material orthotropy and inhomogeneity on the stress intensity factors and crack 
opening displacements. 

2. Formulation and Solution of the Crack Problem 

Consider the crack problem for an orthotropic inhomogeneous medium 
described by Fig. 1. In the usual notation let U{ and ay, (i,j= 1,2,3) be the 
displacement and stress components and En, Gy and i/y, (i,j = 1,2,3) be the 
engineering elastic constants ((vij/Eu) = {vji/Ejj)). To simplify the equations of 
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the plane elasticity we introduce the following averaged constants (Krenk, 1979, 
Cinar and Erdogan, 1973): 

En     v\2 E 
E = y/EiiEn,    v = y/pwV2i,    64 = — = —,        K0 = — v,    (1) 

v i^22        ^21 *«12 

for generalized plane stress and 

„_    / EuEw _    I(vi2 + ^13 ^32)(^21 + ^23 *fri) 
"" Y (1 - VaVsl)(l ~ ^23^32) ' ~ V      (1-^13 **l)(l - ^23 ^32) 

54 = Eii(l-u23u32)^ JL-V (2) 
E22 (1-^13^31)' 2Gi2 

for plane strain. We also use the stiffness ratio 5 to scale the independent and 
dependent variables as 

x = xi/y/6, y = x2y/ö, u(x,y) = y/6ui(xux2), v(x,y) = u2(xi,x2)/y/6, 

0xx(.x,y) = an(xi,x2)/8, (Jyy(x,y) = 6a22(x1,x2), axy(x,y) = ax2{xi,x2). 

(3) 
In terms of the new variables the stress-displacement relations become 

,     ,     E*(x,y)fd    .     s       d   ,     \ 
*x,(*,v) =   i_y2  \j^(x>v)+vaj<x*V))' 

,     ,     E*(x,y)( d   ,     s       d    .     \ 
^(^ y) = 1_vi y -Q^^ y)+V-Qi<x> y))» 

,     .      E*(x,y) ( d   ,     ,      d   .     \ 
a^y) = 2{^TV) \VyU^y) + YxV^y)y (4) 

where 
E*(x,y) = E(xux2). (5) 

The general problem with elastic parameters as arbitrary functions of x and y 
appears to be analytically intractable. To simplify the problem we make two 
assumptions regarding the distribution of the elastic parameters. First the material 
inhomogeneity is assumed to be such that the variations in the stiffnesses En, E22 
and G\% are proportional. The second assumption is concerned with the Poisson's 
ratio v. The previous results indicate that the solution of the crack problem in 
inhomogeneous materials are not very sensitive to v. Consequently, in the problem 
under consideration it may be assumed that v is a constant throughout the medium. 
These two assumptions imply that the parameters «o and 6 as well as v are 
independent of x\ and x2 and the inhomogeneity in the medium is represented by 
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E(x\,X2). If we further assume that the material properties vary only in x2 

direction and within that part of the medium perturbed by the crack the function E 
may be approximated by 

E(xux2) = EM = E0 e
a*2 = E*(x, y) = E0e™,    7 = **/y/6, (6) 

substituting (4) into the equilibrium equations it may be seen that 

d2u     _ d2u     .   d2v        (du     dv\ 

d2v     _ d2v     n d2u        . (dv      du\ 
M+&W+ß2drty-+'/ßl\dy' + Udx-) +&iz*+fosrs- + 'yfr[-Er + v-zz  =o. (?) 

where ß\ = 2(K0 + v)/(l — v2) and /% = 1 + i'A- Equations (7) are solved 
under the following boundary and continuity conditions : 

^22^1' +°) = ^22(^1»-°)' ^«(«lt+O) = ^ratei»-0)» -0° < * < °°>        (8) 

^22(^1.+°) = ^o(*i).   ^i2(
a;i»+0) = 'ro(a:i),    -a<x1<a, (9) 

«2(^1,+0) = 112(21,-0),   ui(xi,+0) = ui(a:i,-0),   a<|rri|<oo. (10) 

By using Fourier transforms and defining 

Vl(*l) = g^"(Ui" ~ UT)> V2(*l) = ^"("2" - u2~)» (11) 
the problem may be reduced to a system of singular integral equations of the form 
(see Ozturk and Erdogan, 1996) 

TO (*i) 
dsi = 

1   rfl r     /„ \ 
Z I     r   \  +Nn(x1,sl)<p1{s1)+Nvl{x1,81)y2{81)  W1 _ 
7ry-oLai-a;i J £ocoo 

I T [^^-+iV21(x1,SlV1(Sl)+JV22(a:1,SlV2(Sl)l dSl = %£ll, 

-o < si < o, (12) 
where N^, (», j = 1,2), are known functions (see Ozturk and Erdogan, 1996) and 

co = 2,    +_y       ri = >/«o+»«i,       «1 = \/l-«o • (I3) 

Expressing now the unknown functions in the form 
1 00 

£»£(*)=   /,    j9YlA*»T»®>    /i(i) = ^-(s1),   (t = l,2),    t = Sl/o, 
V1 - & n=0 

Ei=^0coß,    E2 = EQco/6,   -Kt<l, (14) 
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(12) may be reduced to a system of linear algebraic equations in Ain. In (14) Tn(t) 
are the Chebyshev polynomials of the first kind. 

From the single-valuedness conditions it may be shown that Aio — A2§ = 0. 
After obtaining the coefficients A{n, the stress intensity factors may be defined by 
and evaluated from 
  00 

fci(o)=   lim y/2(sBi - a)022(0:1,+0) = -^E^n, 
i-taw 1 

hiip) = lim lim \/2(xi - a)a12(xi,+0) = -y/aY^^in- (15) 
x—»a+0 1 

Similarly, from (11) and (14) the crack opening displacements may be expressed as 

1    I °° 1 
t*i(xi,+0) -tii(a?i,-0) = --Ja2 - x\S^- AxrJJn-^xx/a), 

1     I  °° 1 
u2(xly+0) - u2(xu -0) = -— Ja? - x\ V- AtnUn-^xt/a), (16) 

■&2   v l^n 

where Un{t) are the Chebyshev polynomials of the second kind. Also, by 
expressing the asymptotic values of the stresses and the crack opening 
displacements in terms of the stress intensity factors and by using the conventional 
crack closure energy concept, the strain energy release rate may be evaluated at, 
for example, the crack tip xi = a as 

S=4i^Ho) + !*4 (I7> 
In the corresponding isotropic material 6 = 1, K = 1, Co = 1/4, and Q becomes 

G=§-Q(kUa) +14(a)), (18) 

where E0 = E(0) for plane stress and E0 = E(0)/(1 - u2) for plane strain, 
E(x2) and v being the elastic parameters of the inhomogeneous medium. 

4. Results and Discussion 

Referring to Fig. 1, since the material properties vary in x2 direction only and 
xi and x2 are the principal axes of orthotropy, x\ = 0 is a plane of symmetry with 
regard to the geometry of the medium and material properties. Therefore, by 
decomposing the external loads ao(xi)and ro(a;i) in (9) into even and odd 
components, it may be shown that the stresses and displacements are either even or 
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odd functions in x\. Consequently, it is sufficient to evaluate the stress intensity 
factors at one crack tip only (x\ = a). 

In the examples given it will be assumed that the crack surface tractions are 
described by 

(19) 
In (6) a has a dimension of 1/length. Thus expressing the exponent by 
OLXi = (aa)(x2/a), it is seen that the inhomogeneity parameter a enters the 
analysis only through the dimensionless constant aa. 

Some sample results for the strain energy release rate calculated from (17) in 
an orthotropic inhomogeneous medium under uniform tension a22(xi, T oo) = po 
or ao(x\) = —po, TQ(XI) = 0 are given in Figures 2 and 3. The normalizing strain 
energy release rate QQ = itp\a/Eo corresponds to a homogeneous isotropic 
medium Figure 2 gives the result for a fixed shear parameter «o and varying aa 
and 6. Note that in an isotropic homogeneous medium aa = 0, «o = 1, 6 = 1 
giving Q/Qo = 1. Also the figure shows that quantitatively Q/GQ may deviate 
from unity quite considerably, meaning that the influence of KQ, aa and 6 on Q can 
be very significant. Figure 3 shows the variation of Q with aa and «o- 

Some calculated results for the stress intensity factors are shown in Figures 4- 
6. The external loads in these results are the uniform tractions po and go defined by 
(19). These figures show that, regardless of the values of orthotropy constants «o, 
8 (and u), as aa tends to zero the stress intensity factors approach their respective 
values for the corresponding homogeneous medium that is, po\/ö and qoy/a . 
This, of course, is the well-known result. The figures also show that the effect of 
the material inhomogeneity parameter on the mode I stress intensity factor is more 
pronounced than on the mode II stress intensity factor. 

Typical results showing the crack opening displacements obtained from (16) 
for v = 0.3, «o = 0.5 and 64 = 10 are given in Figures 7 and 8. It may again be 
seen that the results are highly dependent on the inhomogeneity parameter aa. 
More detailed results for stress intensity factors covering broad range of 
parameters aa, «0, 6 and v may be found in the report by Ozturk and Erdogan 
(1996). 
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Fig. 1 Geometry and notation for mixed mode crack 
problem in an orthotropic inhomogeneous medium 
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Fig.2 Variation of the normalized strain energy 
release rate with aaand 6 in a graded orthotropic 
medium under uniform tension, KQ = 1, v = 0.3, 
<rn{xu ± oo) = po, Go = xifta/Eo. 
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Fig. 3 Variation of the normalized strain energy 
release rate with Ko and aa in a graded orthotropic 
medium under uniform tension a22(xi, ± oo) = po, 
5 = 1,»» = 0.3, So = T?§o/£Ä. 
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Fig. 5 Variation of the normalized stress intensity 
for an inhomogeneous orthotropic medium 
containing a crack under uniform pressure loading 
oo(xi) = —po,Tb(xi) — 0, «o = —0.5, v = 0.3. 
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Fig. 4 Variation of the normalized stress intensity 
factor for an inhomogeneous orthotropic medium 
containing a crack under uniform pressure loading 
(T0(a:i) = -po,T-o(a:i) =0,6*= 0.25, v = 0.3. 
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Fig.6 Variation of the normalized stress intensity factor 
for an inhomogeneous orthotropic medium containing a 
crack under uniform shear loading CQ (XI ) = 0, 
75(2:1) = -go.«o = -0.5, v = 0.3. 

Fig. 7 The influence of aa on the crack opening 
displacement V0 for an inhomogeneous orthotropic 
medium under uniform pressure loadings, T0(XI) = 0, 
<7o(*i) = -Po, &■ = 10.0, v = 0.3, KO = 0.5, 
V0 = (vvixu +0) - usOn, -0))/«o, 
«0 = apa/Ek 
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-0.15 h__^ 

-0.5      0.0 
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Fig. 8 The influence of aa on the crack opening 
displacement UQ for an inhomogeneous orthotropic 
medium under uniform pressure loadings, 
TQ(XI) = 0, <70(a;i) = -po, 64 = 10.0, v = 0.3, 
KO = 0.5, U0 = (ui (zi, +0) - «i (xi, -0))/uo, 
uo = apo/Ei 
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